Photo sundial: Estimating the time of capture in consumer photos

计算机科学 稳健性(进化) 背景(考古学) 多媒体 计算机图形学(图像) 古生物学 生物化学 化学 基因 生物
作者
Tsung-Hung Tsai,Wei-Cih Jhou,Wen-Huang Cheng,Min‐Chun Hu,I‐Chao Shen,Tekoing Lim,Kai‐Lung Hua,Ahmed Ghoneim,M. Shamim Hossain,Shintami Chusnul Hidayati
出处
期刊:Neurocomputing [Elsevier]
卷期号:177: 529-542 被引量:13
标识
DOI:10.1016/j.neucom.2015.11.050
摘要

The time of capture of consumer photos provides rich information in temporal context and has been widely employed for solving various multimedia problems, such as multimedia retrieval and social media analysis. However, we observed that the recorded time stamp in a consumer photo does not often correspond to the true local time at which the photo was taken. This would greatly damage the robustness of time-aware multimedia applications, such as travel route recommendation. Therefore, motivated by the use of traditional sundials, this work proposes a system, Photo Sundial, for estimating the time of capture by exploiting the astronomical theory. In particular, we infer the time by establishing its relations to the measurable astronomical factors from a given outdoor photo, i.e. the sun position in the sky and the camera viewing direction in the photo-taken location. In practice, since it is more often that people would take multiple photos in a single trip, we further develop an optimization framework to jointly estimate the time from multiple photos. Experimental results show that the average estimated time error is less than 0.9 h by the proposed approach, with a significant 65% relative improvement compared to the state-of-the-art method (2.5 h). To the best of our knowledge, this work is the first study in multimedia research to explicitly address the problem of time of capture estimation in consumer photos, and the achieved performances highly encourage our system for practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orchid发布了新的文献求助10
1秒前
小尚完成签到,获得积分10
1秒前
小小咸鱼完成签到 ,获得积分10
2秒前
summer完成签到,获得积分10
2秒前
2秒前
Frank完成签到,获得积分10
3秒前
Criminology34发布了新的文献求助300
4秒前
嘿嘿应助乾澪怀新采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
happy星发布了新的文献求助10
7秒前
Boro发布了新的文献求助10
7秒前
8秒前
之_ZH完成签到 ,获得积分10
9秒前
xingyi完成签到,获得积分10
9秒前
无所忌惮的玫瑰果完成签到,获得积分10
10秒前
平贝花应助mtfx采纳,获得10
10秒前
嘴巴张大一点完成签到,获得积分10
10秒前
qigu完成签到,获得积分10
10秒前
包容的垣完成签到,获得积分10
10秒前
10秒前
heqiancan完成签到,获得积分10
11秒前
smofan发布了新的文献求助10
11秒前
草莓星完成签到,获得积分10
12秒前
13秒前
千树怜完成签到,获得积分20
13秒前
辛勤白玉发布了新的文献求助10
14秒前
andrewliu发布了新的文献求助10
15秒前
孟梦发布了新的文献求助10
15秒前
Orange应助Enkcy采纳,获得10
15秒前
小蘑菇应助SHAHc采纳,获得10
16秒前
16秒前
hyperle完成签到,获得积分10
16秒前
隐形的乐枫完成签到,获得积分10
16秒前
17秒前
蓝天发布了新的文献求助20
19秒前
田様应助粉红色的小花卷采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176