亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicted scuffing Risk to spur and Helical Gears in Commercial Vehicle Transmissions

工程类 限制 汽车工程 动力传动系统 法律工程学 结构工程 机械工程 扭矩 物理 热力学
作者
Carlo H. Wink
摘要

(Printed with permission of the copyright holder, the American Gear Manufacturers Association, 1001 N. Fairfax Street, Fifth Floor, Alexandria, VA 22314-1587. Statements presented in this paper are those of the author(s) and may not represent the position or opinion of the American Gear Manufacturers Association.) introduction The risk of gear tooth scuffing in commercial vehicle transmissions has gained more attention because of increasing demand for fuel-efficient powertrain systems in which diesel engines run at lower speeds, power density is higher, and lubricants are modified to improve efficiency and compatibility with components of new technologies, such as dual-clutch transmissions. Accordingly, predicting scuffing risk during the design phase is vital for the successful development of commercial vehicle transmissions. AGMA 925–A03 (Ref. 1) is a comprehensive method for predicting the probability of gear scuffing. This paper presents the AGMA 925–A03 (Ref. 1) scuffing risk predictions for 50 spur and helical gear sets in transmissions used in commercial vehicles ranging from SAE Class 3 through Class 8. Limiting scuffing temperatures using two mineral and three synthetic gear lubricants was determined from FZG scuffing tests. The risk of scuffing was determined for each gear set according to AGMA 925–03 (Ref. 1). The predictions were compared with field and warranty data, and dynamometer test results. The predictor was correct in all cases. High scuffing risk was predicted for gears known to scuff, and low scuffing risk was predicted for all other cases with no history of scuffing. The document correlation between prediction, test results and actual usage instills confidence in the predictor of scuffing risk for gears in commercial vehicle transmissions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化学之星发布了新的文献求助10
1秒前
Dream点壹完成签到,获得积分10
6秒前
科研通AI5应助yangfan采纳,获得10
10秒前
领导范儿应助化学之星采纳,获得10
13秒前
32秒前
36秒前
剑八发布了新的文献求助10
37秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
HelloJoey发布了新的文献求助10
41秒前
45秒前
Owen应助剑八采纳,获得10
51秒前
1分钟前
ding应助Ysh2255采纳,获得10
1分钟前
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
1分钟前
影子发布了新的文献求助10
1分钟前
蕾蕾发布了新的文献求助10
1分钟前
clarejazir完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
我是老大应助影子采纳,获得10
2分钟前
蕾蕾完成签到,获得积分10
2分钟前
化学之星发布了新的文献求助10
2分钟前
zjy发布了新的文献求助10
2分钟前
彭于晏应助11采纳,获得10
2分钟前
化学之星完成签到,获得积分10
2分钟前
Akim应助lyz666采纳,获得10
2分钟前
科研通AI5应助研友_ZragOn采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
lwj555发布了新的文献求助10
2分钟前
2分钟前
kai发布了新的文献求助10
2分钟前
yangfan发布了新的文献求助10
2分钟前
土豪的摩托完成签到 ,获得积分10
3分钟前
莹莹发布了新的文献求助10
3分钟前
翠西完成签到,获得积分20
3分钟前
李李完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526513
求助须知:如何正确求助?哪些是违规求助? 3106959
关于积分的说明 9281948
捐赠科研通 2804458
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709579