Piston scuffing fault and its identification in an IC engine by vibration analysis

振动 活塞(光学) 频带 声学 频域 断层(地质) 小波 工程类 时域 计算机科学 物理 带宽(计算) 电信 波前 地震学 地质学 光学 人工智能 计算机视觉
作者
Ashkan Moosavian,G. Najafi,Barat Ghobadian,Mojtaba Mirsalim,Seyed Mohammad Jafari,Sharghi Peyman
出处
期刊:Applied Acoustics [Elsevier]
卷期号:102: 40-48 被引量:51
标识
DOI:10.1016/j.apacoust.2015.09.002
摘要

In this paper, the effects of piston scuffing fault on engine performance and vibrations are investigated. A procedure based on vibration analysis is also presented to identify piston scuffing fault. To this end, an internal combustion (IC) engine ran under a specific test procedure. The engine parameters and vibration signals were measured during the experiments. To produce piston scuffing fault, three-body abrasive wear mechanism was employed. The experimental results showed that piston scuffing fault caused the engine performance to reduce significantly. The vibration signals were analyzed in time-domain, frequency-domain and time–frequency domain. Continuous wavelet transform (CWT) was used to obtain time–frequency representations. “dmey” wavelet was selected as the optimum wavelet type for this research among different wavelet types using the three criteria of energy, Shannon entropy and energy to Shannon entropy ratio. The results of CWT analysis by “dmey” wavelet showed that piston scuffing fault excited the frequency band of 2.4–4.7 kHz in which the frequency of 3.7 kHz was affected more. Finally, seven different features were extracted from the engine vibration signals related to the frequency band of 2.4–4.7 kHz. The results indicated that maximum, mean, RMS, skewness, kurtosis and impulse factor of the engine vibration related to the found frequency band increased significantly due to piston scuffing fault. The obtained results showed that the proposed method identified piston scuffing fault and discovered the vibration characteristics of this fault like frequency band. The results also demonstrated the possibility of using engine vibrations in piston scuffing fault identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwy发布了新的文献求助10
1秒前
wz发布了新的文献求助10
1秒前
balzacsun发布了新的文献求助10
3秒前
JamesPei应助星星采纳,获得10
3秒前
4秒前
4秒前
laodie完成签到,获得积分10
5秒前
彭于晏应助ipeakkka采纳,获得10
5秒前
5秒前
敏感的芷发布了新的文献求助10
5秒前
susan发布了新的文献求助10
5秒前
6秒前
李爱国应助轻松的贞采纳,获得10
6秒前
wz完成签到,获得积分10
7秒前
子川完成签到 ,获得积分10
7秒前
怕孤独的鹭洋完成签到,获得积分10
7秒前
8秒前
耍酷的夏云完成签到,获得积分10
8秒前
laodie发布了新的文献求助10
9秒前
9秒前
小达完成签到,获得积分10
9秒前
nenoaowu发布了新的文献求助10
9秒前
文章要有性价比完成签到,获得积分10
10秒前
俏皮半烟完成签到,获得积分10
10秒前
Aki发布了新的文献求助10
10秒前
111完成签到,获得积分10
12秒前
耗尽完成签到,获得积分10
12秒前
烂漫驳发布了新的文献求助10
14秒前
轻松的贞完成签到,获得积分10
15秒前
李健应助balzacsun采纳,获得10
16秒前
轻松的悟空完成签到 ,获得积分10
18秒前
susan完成签到,获得积分10
19秒前
0029完成签到,获得积分10
21秒前
Aki完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
24秒前
LXR完成签到,获得积分10
26秒前
thchiang发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824