Piston scuffing fault and its identification in an IC engine by vibration analysis

振动 活塞(光学) 频带 声学 频域 断层(地质) 小波 工程类 时域 计算机科学 物理 带宽(计算) 电信 波前 地震学 地质学 光学 人工智能 计算机视觉
作者
Ashkan Moosavian,G. Najafi,Barat Ghobadian,Mojtaba Mirsalim,Seyed Mohammad Jafari,Sharghi Peyman
出处
期刊:Applied Acoustics [Elsevier]
卷期号:102: 40-48 被引量:51
标识
DOI:10.1016/j.apacoust.2015.09.002
摘要

In this paper, the effects of piston scuffing fault on engine performance and vibrations are investigated. A procedure based on vibration analysis is also presented to identify piston scuffing fault. To this end, an internal combustion (IC) engine ran under a specific test procedure. The engine parameters and vibration signals were measured during the experiments. To produce piston scuffing fault, three-body abrasive wear mechanism was employed. The experimental results showed that piston scuffing fault caused the engine performance to reduce significantly. The vibration signals were analyzed in time-domain, frequency-domain and time–frequency domain. Continuous wavelet transform (CWT) was used to obtain time–frequency representations. “dmey” wavelet was selected as the optimum wavelet type for this research among different wavelet types using the three criteria of energy, Shannon entropy and energy to Shannon entropy ratio. The results of CWT analysis by “dmey” wavelet showed that piston scuffing fault excited the frequency band of 2.4–4.7 kHz in which the frequency of 3.7 kHz was affected more. Finally, seven different features were extracted from the engine vibration signals related to the frequency band of 2.4–4.7 kHz. The results indicated that maximum, mean, RMS, skewness, kurtosis and impulse factor of the engine vibration related to the found frequency band increased significantly due to piston scuffing fault. The obtained results showed that the proposed method identified piston scuffing fault and discovered the vibration characteristics of this fault like frequency band. The results also demonstrated the possibility of using engine vibrations in piston scuffing fault identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助hshsh采纳,获得10
1秒前
科研小白发布了新的文献求助20
1秒前
jorjames完成签到,获得积分10
1秒前
小白小白鼠完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助高发采纳,获得10
2秒前
4秒前
等待的剑身完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
橙汁发布了新的文献求助10
7秒前
小马能发sci完成签到,获得积分10
7秒前
Ava应助夏天无采纳,获得20
7秒前
7秒前
张张完成签到,获得积分10
8秒前
8秒前
树下完成签到,获得积分20
8秒前
9秒前
Jasper应助小白采纳,获得10
9秒前
11秒前
gc发布了新的文献求助10
11秒前
miao发布了新的文献求助10
11秒前
12秒前
张张发布了新的文献求助10
12秒前
树下发布了新的文献求助10
12秒前
june完成签到,获得积分10
13秒前
akito发布了新的文献求助10
15秒前
栗2发布了新的文献求助10
16秒前
子车茗应助典雅涵瑶采纳,获得10
17秒前
19秒前
19秒前
gc完成签到,获得积分10
19秒前
19秒前
CodeCraft应助小马能发sci采纳,获得10
20秒前
20秒前
顺利的绿柏完成签到,获得积分10
21秒前
22秒前
itachi完成签到,获得积分10
24秒前
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919