Piston scuffing fault and its identification in an IC engine by vibration analysis

振动 活塞(光学) 频带 声学 频域 断层(地质) 小波 工程类 时域 计算机科学 物理 带宽(计算) 电信 光学 地质学 人工智能 地震学 波前 计算机视觉
作者
Ashkan Moosavian,G. Najafi,Barat Ghobadian,Mojtaba Mirsalim,Seyed Mohammad Jafari,Sharghi Peyman
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:102: 40-48 被引量:51
标识
DOI:10.1016/j.apacoust.2015.09.002
摘要

In this paper, the effects of piston scuffing fault on engine performance and vibrations are investigated. A procedure based on vibration analysis is also presented to identify piston scuffing fault. To this end, an internal combustion (IC) engine ran under a specific test procedure. The engine parameters and vibration signals were measured during the experiments. To produce piston scuffing fault, three-body abrasive wear mechanism was employed. The experimental results showed that piston scuffing fault caused the engine performance to reduce significantly. The vibration signals were analyzed in time-domain, frequency-domain and time–frequency domain. Continuous wavelet transform (CWT) was used to obtain time–frequency representations. “dmey” wavelet was selected as the optimum wavelet type for this research among different wavelet types using the three criteria of energy, Shannon entropy and energy to Shannon entropy ratio. The results of CWT analysis by “dmey” wavelet showed that piston scuffing fault excited the frequency band of 2.4–4.7 kHz in which the frequency of 3.7 kHz was affected more. Finally, seven different features were extracted from the engine vibration signals related to the frequency band of 2.4–4.7 kHz. The results indicated that maximum, mean, RMS, skewness, kurtosis and impulse factor of the engine vibration related to the found frequency band increased significantly due to piston scuffing fault. The obtained results showed that the proposed method identified piston scuffing fault and discovered the vibration characteristics of this fault like frequency band. The results also demonstrated the possibility of using engine vibrations in piston scuffing fault identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助畅快的雅青采纳,获得10
1秒前
1秒前
hbhbj发布了新的文献求助10
1秒前
wyp发布了新的文献求助10
2秒前
prode完成签到,获得积分10
3秒前
3秒前
lalala应助黎明森采纳,获得10
3秒前
4秒前
sdaDAS发布了新的文献求助10
4秒前
5秒前
CipherSage应助guochang采纳,获得10
5秒前
Edward发布了新的文献求助30
6秒前
浮游应助和老爹豆豆采纳,获得10
6秒前
闫小天天完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
666发布了新的文献求助10
8秒前
英俊的铭应助热情的远锋采纳,获得10
8秒前
小二郎应助vebb采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
和谐诗双发布了新的文献求助10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
10秒前
Epiphany发布了新的文献求助10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
蔡宇滔完成签到,获得积分10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058