乙烯醇
傅里叶变换红外光谱
水解
惰性气体
热分解
降级(电信)
化学
酒
醋酸乙烯酯
材料科学
核化学
高分子化学
化学工程
有机化学
聚合物
电信
计算机科学
工程类
共聚物
作者
Mohammad Taghi Taghizadeh,Nazanin Yeganeh,Mostafa Rezaei
摘要
ABSTRACT A generalized form of a semiquantitative method has been developed based on the multilinear least‐squares regression technique applied on the entire FTIR absorbance spectrum of a gaseous mixture to determine components concentration. Thermal degradation of poly(vinyl alcohol) samples with high, PVA(98), and low degree of hydrolysis, PVA(80), has been investigated by TG‐FTIR simultaneous analysis performed in an inert atmosphere. Analysis of gaseous products was carried out using a routine developed in Matlab and this routine returns the product concentration with a reasonable RMS error. The correlation coefficients of the original mixture spectrum with the mixed output were obtained at some specific peak temperatures using irAnalysis software. The first process is the loss of physically adsorbed water which followed by two main processes of thermal degradation. In spite of the similarity of evolved gaseous products, two samples showed some differences in components concentrations identified in the volatile mixture. Acetaldehyde has been identified as the main volatile product in the first thermal degradation step of PVA(98) and PVA(80). The second major degradation product of PVA(80) is acetic acid due to presence of more residual acetate group while 2‐butenal have been identified for PVA(98). Water was mainly produced in the first stage of thermal degradation of PVA(98) while it was identified in the first and second stages for PVA(80). This might be attributed to existence of a competition between water and residual acetate group for elimination that postpones the complete elimination of OH group to the second degradation stage. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42117.
科研通智能强力驱动
Strongly Powered by AbleSci AI