Multi-View Clustering Based on Belief Propagation

聚类分析 计算机科学 约束聚类 一致性(知识库) 约束(计算机辅助设计) 亲和繁殖 相关聚类 数据挖掘 概念聚类 模糊聚类 CURE数据聚类算法 人工智能 理论计算机科学 机器学习 数学 几何学
作者
Chang‐Dong Wang,Jianhuang Lai,Philip S. Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1007-1021 被引量:129
标识
DOI:10.1109/tkde.2015.2503743
摘要

The availability of many heterogeneous but related views of data has arisen in numerous clustering problems. Different views encode distinct representations of the same data, which often admit the same underlying cluster structure. The goal of multi-view clustering is to properly combine information from multiple views so as to generate high quality clustering results that are consistent across different views. Based on max-product belief propagation, we propose a novel multi-view clustering algorithm termed multi-view affinity propagation (MVAP). The basic idea is to establish a multi-view clustering model consisting of two components, which measure the within-view clustering quality and the explicit clustering consistency across different views, respectively. Solving this model is NP-hard, and a multi-view affinity propagation is proposed, which works by passing messages both within individual views and across different views. However, the exemplar consistency constraint makes the optimization almost impossible. To this end, by using some previously designed mathematical techniques, the messages as well as the cluster assignment vector computations are simplified to get simple yet functionally equivalent computations. Experimental results on several real-world multi-view datasets show that MVAP outperforms existing multi-view clustering algorithms. It is especially suitable for clustering more than two views.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助顺利鱼采纳,获得10
刚刚
搜集达人应助招财不肥采纳,获得10
1秒前
sweetbearm应助李秋静采纳,获得10
1秒前
Michael_li完成签到,获得积分10
1秒前
whs完成签到,获得积分10
3秒前
科研通AI5应助xlj采纳,获得10
4秒前
再干一杯发布了新的文献求助10
4秒前
5秒前
满意的天完成签到 ,获得积分10
5秒前
luoshiwen完成签到,获得积分10
5秒前
落寞的觅柔完成签到,获得积分10
7秒前
8秒前
LUNWENREQUEST发布了新的文献求助10
8秒前
9秒前
10秒前
123cxj完成签到,获得积分10
13秒前
CO2发布了新的文献求助10
13秒前
summer发布了新的文献求助10
13秒前
14秒前
Xx.发布了新的文献求助10
14秒前
大大关注了科研通微信公众号
14秒前
稚祎完成签到 ,获得积分10
14秒前
14秒前
CodeCraft应助东东采纳,获得10
15秒前
16秒前
叽里咕噜完成签到 ,获得积分10
17秒前
田様应助zccc采纳,获得10
18秒前
隐形的雁完成签到,获得积分10
18秒前
追寻的秋玲完成签到,获得积分10
19秒前
李繁蕊发布了新的文献求助10
19秒前
20秒前
舒心的紫雪完成签到 ,获得积分10
21秒前
21秒前
23秒前
23秒前
24秒前
不上课不行完成签到,获得积分10
25秒前
再干一杯完成签到,获得积分10
25秒前
26秒前
汉堡包应助rudjs采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808