Detection of Human Brain Tumor Infiltration With Quantitative Stimulated Raman Scattering Microscopy

胶质瘤 医学 病理 显微镜 活检 离体 脑瘤 组织学 H&E染色 体内 染色 生物 癌症研究 生物技术
作者
Ray R. Zhang,John S. Kuo
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:78 (4): N9-N11 被引量:6
标识
DOI:10.1227/01.neu.0000481982.43612.7b
摘要

Better imaging methods to accurately resolve glioma margins may help improve resection and clinical outcomes for glioma patients. Currently, clinical imaging technologies cannot reliably visualize infiltrating glioma cells, leading to incomplete resections and tumor recurrence. Recently, Ji et al1 demonstrated improvements in the use of stimulated Raman scattering (SRS) microscopy in a label-free, automated fashion to accurately delineate tumor margins in ex vivo tissue specimens. SRS microscopy relies on differences in the intrinsic vibrational properties of lipids, proteins, and DNA to achieve chemical contrast. It does not require labeling and can be performed in situ. The different compositions of these macromolecules in malignant and normal tissue can be detected with SRS microscopy to distinguish malignant tissue from normal tissue at the cellular level. A dual Raman frequency approach measuring the ratio of Raman signals at 2930 and 2845 cm−1 (S2930/S2845) reflects the different protein and lipid concentrations of brain regions, with highly cellular regions appearing more protein dense and areas of dense axonal regions appearing more lipid dense. As initial proof of principle, the authors demonstrated that SRS imaging using the protein channel (2930 cm−1) and lipid channel (2845 cm−1) recapitulates many histological features of normal brain specimens and histopathological hallmarks of different central nervous system malignancies. When neuropathologists were shown images of SRS microscopy–analyzed biopsy specimens and hematoxylin and eosin–stained tissue histology from 3 control epilepsy patient brains, 2 low-grade gliomas, and 2 high-grade gliomas, SRS analysis accurately distinguished between normal brain, infiltrating glioma, and high-density glioma with similar accuracy (95.1% vs 92.4%, respectively). To further minimize analysis time, the authors automated the process of determining tumor infiltration vs no tumor infiltration by quantifying salient features such as nuclear density, axonal density, and protein/lipid ratio (Figure, A). The program was able to accurately and automatically quantify these measures with very similar results compared with manual quantification using a set of 1477 fields of view (FOVs) obtained from 51 fresh tissue biopsies of 18 patients (3 epilepsy control subjects and 15 patients with brain cancers). The authors then derived a classifier system using half the FOVs by integrating all 3 metrics into a single probability score to distinguish tumor infiltration from no infiltration (Figure, A). The classifier system detected tumor infiltration with 97.5% sensitivity and 98.5% specificity in the other half of the FOVs. This classifier system was also highly accurate in distinguishing between different categories of tumor infiltration: normal, infiltrating glioma, and dense glioma (Figure, B). Because glial tumors tend to have less distinct borders than nonglial tumors, a separate classification system was developed for detecting glial tumor infiltration using the same metrics, leading to 97.0% sensitivity and 98.5% specificity. Finally, because these models incorporated FOVs from the same patients to both derive and test the classifier systems, a separate classifier system was developed that excluded a patient from the derivation set to eliminate potential dependencies. This “leave-one-out” cross-validation system predicted tumor infiltration in the excluded patient with 87.3 sensitivity and 87.5% specificity.Figure: Nuclear density, axonal density, and ratio of protein to lipid are quantified from stimulated Raman scattering (SRS) images to derive classifier values. A, 1477 fields of view (FOVs; 300 × 300 mm2) from 51 fresh tissue biopsies from 18 patients (3 epilepsy patients and 15 patients with brain and spine tumors encompassing 8 distinct histological subtypes) were quantified for nuclear density, axonal density, and ratio of protein to lipid on the basis of SRS microscopy analysis. Each point on the scatterplot represents the average value of each biopsy, and each biopsy was classified as predominantly normal to minimally hypercellular (n = 21), infiltrating tumor (n = 14), or high-density tumor (n = 16) by a board-certified neuropathologist on the basis of hematoxylin and eosin staining. Marker color indicates the mean classifier value for each biopsy, with 0 (most likely normal) depicted in cyan and 1 (most likely tumor) depicted in red. Representative FOVs from normal cortex, normal white matter, low-grade glioma, and high-grade glioma are shown. Green represents lipid-dense areas (S2930/S2845 >1); blue represents protein-dense areas (S2930/S2845 <1). B and C, relationship of classifier values with tumor density (B) and histological subtype (C). All parameters are normalized to the maximum measurement obtained of that variable and displayed in arbitrary units. Data are mean ± SEM. GBM, glioblastoma multiforme. Modified from Ji et al. From Ji M, Lewis S, Camelo-Piragua S, et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Trans Med. 2015;7(309):309ra163. Reprinted with permission from AAAS.SRS microscopy is a sensitive method to detect glioma margins and histopathological hallmarks of central nervous system malignancies without laborious labeling or processing of biopsied specimens. Ji et al1 have further refined SRS microscopy to an automated, quantitative approach that may be more easily integrated into clinical workflow to detect infiltrating gliomas with accuracy. Further work using larger, independent data sets will improve the sensitivity and specificity of the automated classifier system. Although this method cannot provide all the architectural, genetic, and biochemical data of traditional molecular and histological analysis, it can potentially be useful intraoperatively to determine the glioma margins in situ or ex vivo to improve resections. Evaluating in situ SRS microscopy and exploring strategies to coregister the SRS imaging data (currently limited by depth) with the surgical FOV are underway to further realize the clinical potential for SRS microscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
啊娴仔发布了新的文献求助10
3秒前
sophia完成签到 ,获得积分10
3秒前
平常从蓉发布了新的文献求助10
3秒前
大虫子完成签到,获得积分10
4秒前
欣欣完成签到,获得积分10
4秒前
小刘鸭鸭发布了新的文献求助10
5秒前
6秒前
阿杰完成签到,获得积分10
6秒前
Science-x发布了新的文献求助10
6秒前
JamesPei应助意意采纳,获得10
8秒前
贪玩的成危完成签到 ,获得积分10
9秒前
IAMXC发布了新的文献求助10
9秒前
谦让的樱发布了新的文献求助10
10秒前
彭于晏应助Jey采纳,获得10
10秒前
领导范儿应助9999采纳,获得10
10秒前
Yi发布了新的文献求助10
11秒前
清脆黑米应助Su采纳,获得10
11秒前
11秒前
向阳花完成签到,获得积分10
11秒前
朱佳玉完成签到,获得积分10
12秒前
14秒前
14秒前
1111111发布了新的文献求助10
16秒前
Hello应助Science-x采纳,获得10
16秒前
77发布了新的文献求助10
16秒前
嘟嘟大魔王应助hhhhhhh采纳,获得10
17秒前
叁壹捌发布了新的文献求助10
18秒前
Owen应助Yi采纳,获得10
18秒前
闪闪凝冬完成签到,获得积分10
19秒前
二分完成签到,获得积分20
20秒前
loong发布了新的文献求助10
21秒前
21秒前
天天快乐应助淡淡菠萝采纳,获得10
22秒前
22秒前
852应助mgh采纳,获得10
22秒前
23秒前
欣喜战斗机完成签到,获得积分10
23秒前
烟花应助橙汁椰子汁采纳,获得30
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140718
求助须知:如何正确求助?哪些是违规求助? 2791628
关于积分的说明 7799729
捐赠科研通 2447921
什么是DOI,文献DOI怎么找? 1302210
科研通“疑难数据库(出版商)”最低求助积分说明 626473
版权声明 601194