亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Human Brain Tumor Infiltration With Quantitative Stimulated Raman Scattering Microscopy

胶质瘤 医学 病理 显微镜 活检 离体 脑瘤 组织学 H&E染色 体内 染色 生物 癌症研究 生物技术
作者
Ray R. Zhang,John S. Kuo
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:78 (4): N9-N11 被引量:6
标识
DOI:10.1227/01.neu.0000481982.43612.7b
摘要

Better imaging methods to accurately resolve glioma margins may help improve resection and clinical outcomes for glioma patients. Currently, clinical imaging technologies cannot reliably visualize infiltrating glioma cells, leading to incomplete resections and tumor recurrence. Recently, Ji et al1 demonstrated improvements in the use of stimulated Raman scattering (SRS) microscopy in a label-free, automated fashion to accurately delineate tumor margins in ex vivo tissue specimens. SRS microscopy relies on differences in the intrinsic vibrational properties of lipids, proteins, and DNA to achieve chemical contrast. It does not require labeling and can be performed in situ. The different compositions of these macromolecules in malignant and normal tissue can be detected with SRS microscopy to distinguish malignant tissue from normal tissue at the cellular level. A dual Raman frequency approach measuring the ratio of Raman signals at 2930 and 2845 cm−1 (S2930/S2845) reflects the different protein and lipid concentrations of brain regions, with highly cellular regions appearing more protein dense and areas of dense axonal regions appearing more lipid dense. As initial proof of principle, the authors demonstrated that SRS imaging using the protein channel (2930 cm−1) and lipid channel (2845 cm−1) recapitulates many histological features of normal brain specimens and histopathological hallmarks of different central nervous system malignancies. When neuropathologists were shown images of SRS microscopy–analyzed biopsy specimens and hematoxylin and eosin–stained tissue histology from 3 control epilepsy patient brains, 2 low-grade gliomas, and 2 high-grade gliomas, SRS analysis accurately distinguished between normal brain, infiltrating glioma, and high-density glioma with similar accuracy (95.1% vs 92.4%, respectively). To further minimize analysis time, the authors automated the process of determining tumor infiltration vs no tumor infiltration by quantifying salient features such as nuclear density, axonal density, and protein/lipid ratio (Figure, A). The program was able to accurately and automatically quantify these measures with very similar results compared with manual quantification using a set of 1477 fields of view (FOVs) obtained from 51 fresh tissue biopsies of 18 patients (3 epilepsy control subjects and 15 patients with brain cancers). The authors then derived a classifier system using half the FOVs by integrating all 3 metrics into a single probability score to distinguish tumor infiltration from no infiltration (Figure, A). The classifier system detected tumor infiltration with 97.5% sensitivity and 98.5% specificity in the other half of the FOVs. This classifier system was also highly accurate in distinguishing between different categories of tumor infiltration: normal, infiltrating glioma, and dense glioma (Figure, B). Because glial tumors tend to have less distinct borders than nonglial tumors, a separate classification system was developed for detecting glial tumor infiltration using the same metrics, leading to 97.0% sensitivity and 98.5% specificity. Finally, because these models incorporated FOVs from the same patients to both derive and test the classifier systems, a separate classifier system was developed that excluded a patient from the derivation set to eliminate potential dependencies. This “leave-one-out” cross-validation system predicted tumor infiltration in the excluded patient with 87.3 sensitivity and 87.5% specificity.Figure: Nuclear density, axonal density, and ratio of protein to lipid are quantified from stimulated Raman scattering (SRS) images to derive classifier values. A, 1477 fields of view (FOVs; 300 × 300 mm2) from 51 fresh tissue biopsies from 18 patients (3 epilepsy patients and 15 patients with brain and spine tumors encompassing 8 distinct histological subtypes) were quantified for nuclear density, axonal density, and ratio of protein to lipid on the basis of SRS microscopy analysis. Each point on the scatterplot represents the average value of each biopsy, and each biopsy was classified as predominantly normal to minimally hypercellular (n = 21), infiltrating tumor (n = 14), or high-density tumor (n = 16) by a board-certified neuropathologist on the basis of hematoxylin and eosin staining. Marker color indicates the mean classifier value for each biopsy, with 0 (most likely normal) depicted in cyan and 1 (most likely tumor) depicted in red. Representative FOVs from normal cortex, normal white matter, low-grade glioma, and high-grade glioma are shown. Green represents lipid-dense areas (S2930/S2845 >1); blue represents protein-dense areas (S2930/S2845 <1). B and C, relationship of classifier values with tumor density (B) and histological subtype (C). All parameters are normalized to the maximum measurement obtained of that variable and displayed in arbitrary units. Data are mean ± SEM. GBM, glioblastoma multiforme. Modified from Ji et al. From Ji M, Lewis S, Camelo-Piragua S, et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Trans Med. 2015;7(309):309ra163. Reprinted with permission from AAAS.SRS microscopy is a sensitive method to detect glioma margins and histopathological hallmarks of central nervous system malignancies without laborious labeling or processing of biopsied specimens. Ji et al1 have further refined SRS microscopy to an automated, quantitative approach that may be more easily integrated into clinical workflow to detect infiltrating gliomas with accuracy. Further work using larger, independent data sets will improve the sensitivity and specificity of the automated classifier system. Although this method cannot provide all the architectural, genetic, and biochemical data of traditional molecular and histological analysis, it can potentially be useful intraoperatively to determine the glioma margins in situ or ex vivo to improve resections. Evaluating in situ SRS microscopy and exploring strategies to coregister the SRS imaging data (currently limited by depth) with the surgical FOV are underway to further realize the clinical potential for SRS microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxxxx完成签到 ,获得积分10
2秒前
大龙完成签到 ,获得积分10
3秒前
他忽然的人完成签到 ,获得积分10
7秒前
hong关注了科研通微信公众号
9秒前
HH发布了新的文献求助10
12秒前
15秒前
上官若男应助HH采纳,获得10
21秒前
check003完成签到,获得积分10
22秒前
在水一方应助123456采纳,获得10
34秒前
37秒前
亭瞳发布了新的文献求助10
43秒前
44秒前
47秒前
Charon发布了新的文献求助10
48秒前
小二郎应助亭瞳采纳,获得10
49秒前
54秒前
wanci应助llll采纳,获得10
59秒前
1分钟前
豆子给哒哒哒的求助进行了留言
1分钟前
1分钟前
周召兰完成签到,获得积分10
1分钟前
1分钟前
yb完成签到,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
334niubi666完成签到 ,获得积分10
1分钟前
weibo完成签到,获得积分10
1分钟前
英俊的铭应助kido采纳,获得10
1分钟前
1分钟前
万能图书馆应助远方采纳,获得10
1分钟前
叛逆黑洞完成签到 ,获得积分10
1分钟前
光亮的绮晴完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
llll发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5279718
求助须知:如何正确求助?哪些是违规求助? 4434821
关于积分的说明 13805677
捐赠科研通 4314549
什么是DOI,文献DOI怎么找? 2368079
邀请新用户注册赠送积分活动 1363489
关于科研通互助平台的介绍 1326661