双功能
材料科学
电催化剂
纳米颗粒
化学工程
电池(电)
析氧
氧气
氧化还原
催化作用
碳纤维
电化学
过电位
纳米技术
电极
物理化学
复合材料
化学
有机化学
冶金
热力学
工程类
功率(物理)
物理
复合数
作者
Dandan Lyu,Sixian Yao,Asad Ali,Zhi Qun Tian,Panagiotis Tsiakaras,Pei Kang Shen
标识
DOI:10.1002/aenm.202101249
摘要
Abstract Herein, a N, S co‐doped carbon encapsulating Co 9 S 8 nanoparticles (Co 9 S 8 @N, S–C) catalyst is successfully synthesized by a new precursor of Co‐pyridine coordinated‐polymer consisting of 2,6‐diacetylpyridine and 4,4′‐dithiodianiline. Benefiting from the abundant pore‐structure (average pore‐size ≈25nm) and unique electronic‐properties of the Co 9 S 8 and N, S–C layer, the as‐prepared Co 9 S 8 @N, S‐C exhibits rapid oxygen reduction reaction (ORR) kinetics with high electron transfer number of ≈3.998 and demonstrates a low overpotential of 304 mV for the oxygen evolution reaction (OER). It exhibits a small potential difference of 0.647V for overall ORR/OER activity, outperforming most of the non‐precious metal‐catalysts previously reported. The rechargeable Zn–Air battery test further demonstrates its excellent activity and stability, in which the battery delivers a maximum power density output of 259 mW cm −2 , a specific capacity of 862 mAh g Zn −1 , and after continuous 110 h operation the charge‐discharge round‐trip efficiency only reduces by 4.83%. Theoretical calculation studies show that the surface N, S–C layers and Co 9 S 8 can adjust each other's Fermi levels, so that the adsorption energy of Co 9 S 8 @N, S–C on O intermediate is more favorable than using Co 9 S 8 and N, S–C alone. This study reveals the structure‐function relationship of coated‐nanostructures with multifunctional electrocatalytic properties, and provides a feasible strategy for the design of non‐noble metal‐catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI