Forecasting the wind power generation in China by seasonal grey forecasting model based on collaborative optimization

风力发电 可再生能源 风电预测 计算机科学 发电 风速 电力系统 功率(物理) 气象学 计量经济学 环境科学 工程类 地理 数学 物理 量子力学 电气工程
作者
Aodi Sui,Wuyong Qian
出处
期刊:Rairo-operations Research [EDP Sciences]
卷期号:55 (5): 3049-3072 被引量:7
标识
DOI:10.1051/ro/2021136
摘要

Renewable energy represented by wind energy plays an increasingly important role in China’s national energy system. The accurate prediction of wind power generation is of great significance to China’s energy planning and power grid dispatch. However, due to the late development of the wind power industry in China and the lag of power enterprise information, there are little historical data available at present. Therefore, the traditional large sample prediction method is difficult to be applied to the forecasting of wind power generation in China. For this kind of small sample and poor information problem, the grey prediction method can give a good solution. Thus, given the seasonal and long memory characteristics of the seasonal wind power generation, this paper constructs a seasonal discrete grey prediction model based on collaborative optimization. On the one hand, the model is based on moving average filtering algorithm to realize the recognition of seasonal and trend features. On the other hand, based on the optimization of fractional order and initial value, the collaborative optimization of trend and season is realized. To verify the practicability and accuracy of the proposed model, this paper uses the model to predict the quarterly wind power generation of China from 2012Q1 to 2020Q1, and compares the prediction results with the prediction results of the traditional GM(1,1) model, SGM(1,1) model and Holt-Winters model. The results are shown that the proposed model has a strong ability to capture the trend and seasonal fluctuation characteristics of wind power generation. And the long-term forecasts are valid if the existing wind power expansion capacity policy is maintained in the next four years. Based on the forecast of China’s wind power generation from 2021Q2 to 2024Q2 in the future, it is predicted that China’s wind power generation will reach 239.09 TWh in the future, which will be beneficial to the realization of China’s energy-saving and emission reduction targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高路完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
xzyin应助雨水采纳,获得10
1秒前
3秒前
英俊的铭应助吱吱采纳,获得10
3秒前
waiting完成签到,获得积分10
3秒前
Zmy完成签到,获得积分10
4秒前
wu8577应助菜菜采纳,获得10
6秒前
6秒前
7秒前
家伟发布了新的文献求助10
8秒前
ding应助NMZN采纳,获得10
8秒前
霸气乘风完成签到,获得积分10
8秒前
jimmyhui完成签到,获得积分10
9秒前
Surface完成签到 ,获得积分10
10秒前
10秒前
11秒前
QDMENG完成签到,获得积分10
11秒前
孤独的嫣发布了新的文献求助10
11秒前
wanci应助吐个泡泡采纳,获得10
13秒前
靓丽的素关注了科研通微信公众号
13秒前
早晚炸了学校完成签到 ,获得积分10
14秒前
17秒前
17秒前
18秒前
18秒前
复成完成签到 ,获得积分10
19秒前
Ava应助自觉紫安采纳,获得10
19秒前
雨水完成签到,获得积分10
19秒前
搜集达人应助动人的书雪采纳,获得10
19秒前
luoman5656完成签到,获得积分10
20秒前
20秒前
舒心白山完成签到 ,获得积分10
20秒前
21秒前
打打应助虚幻初之采纳,获得10
22秒前
23秒前
靖123456发布了新的文献求助10
23秒前
机会发布了新的文献求助10
23秒前
NMZN发布了新的文献求助10
24秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105