Cross-Scenario Device-Free Gesture Recognition Based on Self-Adaptive Adversarial Learning

计算机科学 试验台 鉴别器 特征(语言学) 手势 手势识别 人工智能 无线 特征提取 杠杆(统计) 机器学习 模式识别(心理学) 计算机网络 电信 语言学 探测器 哲学
作者
Jie Wang,Changcheng Wang,Dongyue Yin,Qinghua Gao,Xiaokai Liu,Miao Pan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (9): 7080-7090 被引量:3
标识
DOI:10.1109/jiot.2021.3113897
摘要

Device-free gesture recognition (DFGR) is an emerging technique which could leverage the influence of human gestures on surrounding wireless signals to recognize gestures. It has gained widespread attention due to its promising prospect of empowering pervasive wireless devices with the sensing ability. Due to the inconsistency of the feature distribution in different scenarios, a well-trained DFGR system often fails to get satisfactory performance in cross-scenario conditions. Researchers have done valuable exploration on alleviating the feature distribution shift from a global distribution point of view. However, global feature distribution alignment could not solve the feature distribution shift problem completely. In this article, we develop a self-adaptive adversarial learning network which could further reduce the feature distribution shift through aligning the local feature distribution. Specifically, we design an adversarial network which is consisted of a feature extractor, a scenario discriminator, and two diverse classifiers. It could evaluate the degree of local feature distribution alignment by analyzing the prediction inconsistent of the classifiers. We design a self-adaptive adversarial loss which can be adjusted adaptively according to the degree of local alignment. If the features have been aligned locally, we reduce their impact on the loss to protect these aligned features. Otherwise, we increase their influence to accelerate the training process. The extensive experiments conducted on a designed mmWave testbed demonstrate that the proposed method could achieve an accuracy of at least 4% higher than those of existing cross-scenario DFGR methods, while the number of training iterations can be reduced by nearly half.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roger完成签到,获得积分10
1秒前
科研蜗牛完成签到,获得积分10
1秒前
abcd_1067完成签到,获得积分10
3秒前
cici完成签到 ,获得积分10
4秒前
王金娥完成签到,获得积分10
8秒前
8秒前
Urusaiina完成签到,获得积分10
9秒前
用行舍藏完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
旺仔同学完成签到,获得积分10
13秒前
bkagyin应助窗外风雨阑珊采纳,获得10
13秒前
99发布了新的文献求助10
15秒前
aikeyan完成签到 ,获得积分10
15秒前
灰灰发布了新的文献求助10
16秒前
文6完成签到 ,获得积分10
18秒前
苏信怜完成签到,获得积分10
19秒前
细心的安双完成签到 ,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
Fiona完成签到 ,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
沉静胜完成签到,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
arniu2008应助科研通管家采纳,获得10
21秒前
小药童应助科研通管家采纳,获得10
21秒前
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
22秒前
Yangyang完成签到,获得积分10
22秒前
小玉完成签到,获得积分10
22秒前
倪好完成签到,获得积分10
22秒前
LL完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071