已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-Scenario Device-Free Gesture Recognition Based on Self-Adaptive Adversarial Learning

计算机科学 试验台 鉴别器 特征(语言学) 手势 手势识别 人工智能 无线 特征提取 杠杆(统计) 机器学习 模式识别(心理学) 计算机网络 电信 语言学 探测器 哲学
作者
Jie Wang,Changcheng Wang,Dongyue Yin,Qinghua Gao,Xiaokai Liu,Miao Pan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (9): 7080-7090 被引量:3
标识
DOI:10.1109/jiot.2021.3113897
摘要

Device-free gesture recognition (DFGR) is an emerging technique which could leverage the influence of human gestures on surrounding wireless signals to recognize gestures. It has gained widespread attention due to its promising prospect of empowering pervasive wireless devices with the sensing ability. Due to the inconsistency of the feature distribution in different scenarios, a well-trained DFGR system often fails to get satisfactory performance in cross-scenario conditions. Researchers have done valuable exploration on alleviating the feature distribution shift from a global distribution point of view. However, global feature distribution alignment could not solve the feature distribution shift problem completely. In this article, we develop a self-adaptive adversarial learning network which could further reduce the feature distribution shift through aligning the local feature distribution. Specifically, we design an adversarial network which is consisted of a feature extractor, a scenario discriminator, and two diverse classifiers. It could evaluate the degree of local feature distribution alignment by analyzing the prediction inconsistent of the classifiers. We design a self-adaptive adversarial loss which can be adjusted adaptively according to the degree of local alignment. If the features have been aligned locally, we reduce their impact on the loss to protect these aligned features. Otherwise, we increase their influence to accelerate the training process. The extensive experiments conducted on a designed mmWave testbed demonstrate that the proposed method could achieve an accuracy of at least 4% higher than those of existing cross-scenario DFGR methods, while the number of training iterations can be reduced by nearly half.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白元风完成签到 ,获得积分10
4秒前
4秒前
肥鲸鱼发布了新的文献求助10
6秒前
7秒前
练习者发布了新的文献求助10
8秒前
cjh关闭了cjh文献求助
8秒前
烟花应助重要的夏烟采纳,获得10
9秒前
明明明发布了新的文献求助10
12秒前
tourist585完成签到,获得积分0
13秒前
abc完成签到 ,获得积分10
15秒前
领导范儿应助周而复始@采纳,获得10
18秒前
折木浮华发布了新的文献求助10
19秒前
科研通AI5应助可爱电话采纳,获得10
20秒前
Kelevator完成签到,获得积分10
22秒前
七里香完成签到 ,获得积分10
25秒前
27秒前
SciGPT应助折木浮华采纳,获得10
27秒前
IfItheonlyone完成签到 ,获得积分10
27秒前
不去明知山完成签到 ,获得积分10
28秒前
29秒前
我爱物理完成签到,获得积分10
30秒前
30秒前
梦璃完成签到 ,获得积分10
33秒前
急雪回风发布了新的文献求助10
34秒前
狮子清明尊完成签到,获得积分10
35秒前
迷人的天抒应助肥鲸鱼采纳,获得10
36秒前
周而复始@发布了新的文献求助10
37秒前
Ashmitte完成签到 ,获得积分10
38秒前
搞怪的归尘完成签到,获得积分10
39秒前
萧萧完成签到,获得积分10
1分钟前
槿曦完成签到 ,获得积分10
1分钟前
急雪回风完成签到,获得积分10
1分钟前
1分钟前
深情安青应助wwwwww采纳,获得10
1分钟前
折木浮华发布了新的文献求助10
1分钟前
microlite完成签到,获得积分10
1分钟前
yarkye完成签到,获得积分10
1分钟前
cjh发布了新的文献求助10
1分钟前
小赵发布了新的文献求助10
1分钟前
无花果应助折木浮华采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166765
捐赠科研通 3248426
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629