已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-Scenario Device-Free Gesture Recognition Based on Self-Adaptive Adversarial Learning

计算机科学 试验台 鉴别器 特征(语言学) 手势 手势识别 人工智能 无线 特征提取 杠杆(统计) 机器学习 模式识别(心理学) 计算机网络 电信 语言学 探测器 哲学
作者
Jie Wang,Changcheng Wang,Dongyue Yin,Qinghua Gao,Xiaokai Liu,Miao Pan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (9): 7080-7090 被引量:3
标识
DOI:10.1109/jiot.2021.3113897
摘要

Device-free gesture recognition (DFGR) is an emerging technique which could leverage the influence of human gestures on surrounding wireless signals to recognize gestures. It has gained widespread attention due to its promising prospect of empowering pervasive wireless devices with the sensing ability. Due to the inconsistency of the feature distribution in different scenarios, a well-trained DFGR system often fails to get satisfactory performance in cross-scenario conditions. Researchers have done valuable exploration on alleviating the feature distribution shift from a global distribution point of view. However, global feature distribution alignment could not solve the feature distribution shift problem completely. In this article, we develop a self-adaptive adversarial learning network which could further reduce the feature distribution shift through aligning the local feature distribution. Specifically, we design an adversarial network which is consisted of a feature extractor, a scenario discriminator, and two diverse classifiers. It could evaluate the degree of local feature distribution alignment by analyzing the prediction inconsistent of the classifiers. We design a self-adaptive adversarial loss which can be adjusted adaptively according to the degree of local alignment. If the features have been aligned locally, we reduce their impact on the loss to protect these aligned features. Otherwise, we increase their influence to accelerate the training process. The extensive experiments conducted on a designed mmWave testbed demonstrate that the proposed method could achieve an accuracy of at least 4% higher than those of existing cross-scenario DFGR methods, while the number of training iterations can be reduced by nearly half.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
88888完成签到,获得积分10
3秒前
朝朝暮夕发布了新的文献求助10
4秒前
ding应助无题采纳,获得10
4秒前
anle完成签到 ,获得积分10
8秒前
null应助时间尘埃采纳,获得10
10秒前
科研通AI6应助88888采纳,获得10
16秒前
Akim应助热心市民小红花采纳,获得30
18秒前
21秒前
酷波er应助西米采纳,获得10
23秒前
25秒前
26秒前
26秒前
26秒前
31秒前
乔木自燃完成签到 ,获得积分10
31秒前
31秒前
33秒前
XT发布了新的文献求助10
35秒前
阿白发布了新的文献求助10
37秒前
zzz完成签到 ,获得积分10
38秒前
大模型应助Sylvia采纳,获得10
38秒前
知行者完成签到 ,获得积分10
40秒前
西米发布了新的文献求助10
40秒前
123123完成签到 ,获得积分10
43秒前
44秒前
45秒前
45秒前
星辰大海应助NF404采纳,获得10
49秒前
满意的天完成签到 ,获得积分10
49秒前
朴实夏波发布了新的文献求助30
50秒前
李健应助阿白采纳,获得10
50秒前
123完成签到 ,获得积分10
50秒前
53秒前
55秒前
桐桐应助nono采纳,获得10
58秒前
59秒前
善学以致用应助长情白柏采纳,获得10
59秒前
呼呼爱学习完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027