已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BeatClass: A Sustainable ECG Classification System in IoT-Based eHealth

计算机科学 人工智能 深度学习 电子健康 机器学习 医疗保健 经济增长 经济
作者
Le Sun,Yilin Wang,Zhiguo Qu,Naixue Xiong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (10): 7178-7195 被引量:35
标识
DOI:10.1109/jiot.2021.3108792
摘要

With the rapid development of the Internet of Things (IoT), it becomes convenient to use mobile devices to remotely monitor the physiological signals (e.g., Arrhythmia diseases) of patients with chronic diseases [e.g., cardiovascular diseases (CVDs)]. High classification accuracy of interpatient electrocardiograms is extremely important for diagnosing Arrhythmia. The Supraventricular ectopic beat (S) is especially difficult to be classified. It is often misclassified as Normal (N) or Ventricular ectopic beat (V). Class imbalance is another common and important problem in electronic health (eHealth), as abnormal samples (i.e., samples of specific diseases) are usually far less than normal samples. To solve these problems, we propose a sustainable deep learning-based heart beat classification system, called BeatClass. It contains three main components: two stacked bidirectional long short-term memory networks (Bi-LSTMs), called Rist and Morst, and a generative adversarial network (GAN), called MorphGAN. Rist first classifies the heartbeats into five common Arrhythmia classes. The heartbeats classified as S and V by Rist are further classified by Morst to improve the classification accuracy. MorphGAN is used to augment the morphological and contextual knowledge of heartbeats in infrequent classes. In the experiment, BeatClass is compared with several state-of-the-art works for interpatient arrhythmia classification. The $F1$ -scores of classifying N, S, and V heartbeats are 0.6%, 16.0%, and 1.8% higher than the best baseline method. The experimental result demonstrates that taking multiple classification models to improve classification results step-by-step may significantly improve the classification performance. We also evaluate the classification sustainability of BeatClass. Based on different physical signal data sets, a trained BeatClass can be updated to classify heartbeats with different sampling rates. Finally, an engineering application indicates that BeatClass can promote the sustainable development of IoT-based eHealth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
语音助手完成签到 ,获得积分10
刚刚
刚刚
2秒前
稳重母鸡完成签到 ,获得积分10
3秒前
Henry应助WZH采纳,获得200
5秒前
kkkl发布了新的文献求助10
5秒前
6秒前
道森不慌完成签到,获得积分20
7秒前
8秒前
慕青应助glj采纳,获得20
8秒前
情怀应助野生菜狗采纳,获得10
8秒前
香蕉觅云应助光亮的笑槐采纳,获得30
9秒前
灵山剑侠发布了新的文献求助10
11秒前
万能图书馆应助Gary采纳,获得30
12秒前
glj完成签到,获得积分10
13秒前
独孤阳光完成签到,获得积分10
14秒前
15秒前
18秒前
柠檬柚子晴完成签到,获得积分10
21秒前
23秒前
23秒前
27秒前
30秒前
何平发布了新的文献求助10
32秒前
32秒前
33秒前
桃子完成签到,获得积分10
33秒前
33秒前
34秒前
17应助Maruko_0_采纳,获得10
34秒前
34秒前
领导范儿应助幽默的溪灵采纳,获得200
35秒前
36秒前
香蕉擎完成签到 ,获得积分10
36秒前
37秒前
40秒前
40秒前
大模型应助科研力力采纳,获得10
40秒前
41秒前
jim完成签到,获得积分10
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801528
关于积分的说明 7845329
捐赠科研通 2459096
什么是DOI,文献DOI怎么找? 1308989
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727