亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BeatClass: A Sustainable ECG Classification System in IoT-Based eHealth

计算机科学 人工智能 深度学习 电子健康 机器学习 医疗保健 经济增长 经济
作者
Le Sun,Yilin Wang,Zhiguo Qu,Naixue Xiong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (10): 7178-7195 被引量:35
标识
DOI:10.1109/jiot.2021.3108792
摘要

With the rapid development of the Internet of Things (IoT), it becomes convenient to use mobile devices to remotely monitor the physiological signals (e.g., Arrhythmia diseases) of patients with chronic diseases [e.g., cardiovascular diseases (CVDs)]. High classification accuracy of interpatient electrocardiograms is extremely important for diagnosing Arrhythmia. The Supraventricular ectopic beat (S) is especially difficult to be classified. It is often misclassified as Normal (N) or Ventricular ectopic beat (V). Class imbalance is another common and important problem in electronic health (eHealth), as abnormal samples (i.e., samples of specific diseases) are usually far less than normal samples. To solve these problems, we propose a sustainable deep learning-based heart beat classification system, called BeatClass. It contains three main components: two stacked bidirectional long short-term memory networks (Bi-LSTMs), called Rist and Morst, and a generative adversarial network (GAN), called MorphGAN. Rist first classifies the heartbeats into five common Arrhythmia classes. The heartbeats classified as S and V by Rist are further classified by Morst to improve the classification accuracy. MorphGAN is used to augment the morphological and contextual knowledge of heartbeats in infrequent classes. In the experiment, BeatClass is compared with several state-of-the-art works for interpatient arrhythmia classification. The $F1$ -scores of classifying N, S, and V heartbeats are 0.6%, 16.0%, and 1.8% higher than the best baseline method. The experimental result demonstrates that taking multiple classification models to improve classification results step-by-step may significantly improve the classification performance. We also evaluate the classification sustainability of BeatClass. Based on different physical signal data sets, a trained BeatClass can be updated to classify heartbeats with different sampling rates. Finally, an engineering application indicates that BeatClass can promote the sustainable development of IoT-based eHealth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西安浴日光能赵炜完成签到,获得积分10
8秒前
Yoanna应助科研通管家采纳,获得20
10秒前
18秒前
36秒前
量子星尘发布了新的文献求助10
38秒前
50秒前
嘻嘻完成签到,获得积分10
1分钟前
1分钟前
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
慕青应助SiboN采纳,获得10
3分钟前
drirshad完成签到,获得积分10
3分钟前
numagok完成签到,获得积分10
4分钟前
ceeray23发布了新的文献求助10
5分钟前
陶醉的蜜蜂完成签到,获得积分10
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
Yini应助Omni采纳,获得10
6分钟前
花落无声完成签到 ,获得积分10
7分钟前
瑾沫流年发布了新的文献求助100
7分钟前
Axs完成签到,获得积分10
7分钟前
科研通AI6应助阿米尔盼盼采纳,获得10
7分钟前
7分钟前
SiboN发布了新的文献求助10
8分钟前
8分钟前
SiboN完成签到,获得积分10
8分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
Hello应助313采纳,获得10
9分钟前
9分钟前
313发布了新的文献求助10
9分钟前
Lucky.完成签到 ,获得积分0
9分钟前
Yini应助313采纳,获得10
9分钟前
9分钟前
bkagyin应助313采纳,获得10
9分钟前
9分钟前
10分钟前
10分钟前
汉堡包应助XiangMo采纳,获得10
10分钟前
负责以山完成签到 ,获得积分10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957939
求助须知:如何正确求助?哪些是违规求助? 4219149
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625