亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BeatClass: A Sustainable ECG Classification System in IoT-Based eHealth

计算机科学 人工智能 深度学习 电子健康 机器学习 医疗保健 经济增长 经济
作者
Le Sun,Yilin Wang,Zhiguo Qu,Naixue Xiong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (10): 7178-7195 被引量:35
标识
DOI:10.1109/jiot.2021.3108792
摘要

With the rapid development of the Internet of Things (IoT), it becomes convenient to use mobile devices to remotely monitor the physiological signals (e.g., Arrhythmia diseases) of patients with chronic diseases [e.g., cardiovascular diseases (CVDs)]. High classification accuracy of interpatient electrocardiograms is extremely important for diagnosing Arrhythmia. The Supraventricular ectopic beat (S) is especially difficult to be classified. It is often misclassified as Normal (N) or Ventricular ectopic beat (V). Class imbalance is another common and important problem in electronic health (eHealth), as abnormal samples (i.e., samples of specific diseases) are usually far less than normal samples. To solve these problems, we propose a sustainable deep learning-based heart beat classification system, called BeatClass. It contains three main components: two stacked bidirectional long short-term memory networks (Bi-LSTMs), called Rist and Morst, and a generative adversarial network (GAN), called MorphGAN. Rist first classifies the heartbeats into five common Arrhythmia classes. The heartbeats classified as S and V by Rist are further classified by Morst to improve the classification accuracy. MorphGAN is used to augment the morphological and contextual knowledge of heartbeats in infrequent classes. In the experiment, BeatClass is compared with several state-of-the-art works for interpatient arrhythmia classification. The $F1$ -scores of classifying N, S, and V heartbeats are 0.6%, 16.0%, and 1.8% higher than the best baseline method. The experimental result demonstrates that taking multiple classification models to improve classification results step-by-step may significantly improve the classification performance. We also evaluate the classification sustainability of BeatClass. Based on different physical signal data sets, a trained BeatClass can be updated to classify heartbeats with different sampling rates. Finally, an engineering application indicates that BeatClass can promote the sustainable development of IoT-based eHealth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
15秒前
16秒前
研友_8RyzBZ发布了新的文献求助10
19秒前
20秒前
ding应助甜美的起眸采纳,获得10
30秒前
ZTLlele完成签到 ,获得积分10
40秒前
41秒前
大个应助南草北树采纳,获得10
53秒前
可靠诗筠完成签到 ,获得积分10
1分钟前
SciGPT应助Efaith采纳,获得10
1分钟前
1分钟前
zhou发布了新的文献求助10
1分钟前
千早爱音应助科研通管家采纳,获得20
1分钟前
YU完成签到 ,获得积分10
1分钟前
1分钟前
zhou完成签到,获得积分10
1分钟前
Efaith发布了新的文献求助10
1分钟前
Efaith完成签到,获得积分20
1分钟前
dddd完成签到,获得积分10
2分钟前
青柚完成签到 ,获得积分10
2分钟前
星辰大海应助xiaoxiao采纳,获得10
2分钟前
2分钟前
2分钟前
阿巴阿巴发布了新的文献求助30
2分钟前
子平完成签到 ,获得积分0
3分钟前
灵剑山完成签到 ,获得积分10
3分钟前
yf完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
千早爱音应助科研通管家采纳,获得20
3分钟前
思源应助研友_8RyzBZ采纳,获得10
3分钟前
3分钟前
Zefinity完成签到,获得积分10
3分钟前
3分钟前
3分钟前
研友_8RyzBZ发布了新的文献求助10
3分钟前
研友_8RyzBZ完成签到,获得积分20
4分钟前
卧镁铀钳完成签到 ,获得积分10
4分钟前
阿巴阿巴完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302418
求助须知:如何正确求助?哪些是违规求助? 4449576
关于积分的说明 13848484
捐赠科研通 4335789
什么是DOI,文献DOI怎么找? 2380540
邀请新用户注册赠送积分活动 1375535
关于科研通互助平台的介绍 1341770