Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review

计算机科学 卷积神经网络 人工智能 医学诊断 深度学习 分割 机器学习 系统回顾 模式识别(心理学) 医学 放射科 梅德林 政治学 法学
作者
Vilson Soares de Siqueira,Moisés Marcos Borges,Rogério Gomes Furtado,Colandy Nunes Dourado,Ronaldo Martins da Costa
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:120: 102165-102165 被引量:26
标识
DOI:10.1016/j.artmed.2021.102165
摘要

The echocardiogram is a test that is widely used in Heart Disease Diagnoses. However, its analysis is largely dependent on the physician's experience. In this regard, artificial intelligence has become an essential technology to assist physicians. This study is a Systematic Literature Review (SLR) of primary state-of-the-art studies that used Artificial Intelligence (AI) techniques to automate echocardiogram analyses. Searches on the leading scientific article indexing platforms using a search string returned approximately 1400 articles. After applying the inclusion and exclusion criteria, 118 articles were selected to compose the detailed SLR. This SLR presents a thorough investigation of AI applied to support medical decisions for the main types of echocardiogram (Transthoracic, Transesophageal, Doppler, Stress, and Fetal). The article's data extraction indicated that the primary research interest of the studies comprised four groups: 1) Improvement of image quality; 2) identification of the cardiac window vision plane; 3) quantification and analysis of cardiac functions, and; 4) detection and classification of cardiac diseases. The articles were categorized and grouped to show the main contributions of the literature to each type of ECHO. The results indicate that the Deep Learning (DL) methods presented the best results for the detection and segmentation of the heart walls, right and left atrium and ventricles, and classification of heart diseases using images/videos obtained by echocardiography. The models that used Convolutional Neural Network (CNN) and its variations showed the best results for all groups. The evidence produced by the results presented in the tabulation of the studies indicates that the DL contributed significantly to advances in echocardiogram automated analysis processes. Although several solutions were presented regarding the automated analysis of ECHO, this area of research still has great potential for further studies to improve the accuracy of results already known in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔以冬完成签到,获得积分10
刚刚
Orange应助欧阳铭采纳,获得10
1秒前
害怕的板凳完成签到 ,获得积分10
2秒前
Chaga发布了新的文献求助10
2秒前
Foch发布了新的文献求助10
2秒前
cnyyp完成签到,获得积分10
3秒前
3秒前
逆蝶发布了新的文献求助10
4秒前
xuchen发布了新的文献求助10
4秒前
4秒前
无奈的晴完成签到,获得积分10
5秒前
5秒前
深情安青应助lizhaoyu采纳,获得10
6秒前
6秒前
mk完成签到,获得积分10
7秒前
佳loong完成签到,获得积分10
7秒前
辰溪完成签到,获得积分20
8秒前
哼哼唧唧发布了新的文献求助10
8秒前
ccc完成签到,获得积分10
9秒前
静水流深完成签到,获得积分10
9秒前
六五发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
wonder发布了新的文献求助10
10秒前
李健的小迷弟应助mk采纳,获得150
11秒前
11秒前
辰溪发布了新的文献求助10
11秒前
Mandy完成签到,获得积分20
12秒前
zhs完成签到,获得积分10
12秒前
虚灵完成签到 ,获得积分10
12秒前
Ultraman发布了新的文献求助10
13秒前
易达发布了新的文献求助10
13秒前
neverever完成签到,获得积分10
14秒前
David发布了新的文献求助10
14秒前
CodeCraft应助lpw采纳,获得10
14秒前
Rondab应助结实星星采纳,获得10
15秒前
共享精神应助zhs采纳,获得10
15秒前
17秒前
lxx发布了新的文献求助30
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070