清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review

计算机科学 卷积神经网络 人工智能 医学诊断 深度学习 分割 机器学习 系统回顾 模式识别(心理学) 医学 放射科 梅德林 政治学 法学
作者
Vilson Soares de Siqueira,Moisés Marcos Borges,Rogério Gomes Furtado,Colandy Nunes Dourado,Ronaldo Martins da Costa
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:120: 102165-102165 被引量:26
标识
DOI:10.1016/j.artmed.2021.102165
摘要

The echocardiogram is a test that is widely used in Heart Disease Diagnoses. However, its analysis is largely dependent on the physician's experience. In this regard, artificial intelligence has become an essential technology to assist physicians. This study is a Systematic Literature Review (SLR) of primary state-of-the-art studies that used Artificial Intelligence (AI) techniques to automate echocardiogram analyses. Searches on the leading scientific article indexing platforms using a search string returned approximately 1400 articles. After applying the inclusion and exclusion criteria, 118 articles were selected to compose the detailed SLR. This SLR presents a thorough investigation of AI applied to support medical decisions for the main types of echocardiogram (Transthoracic, Transesophageal, Doppler, Stress, and Fetal). The article's data extraction indicated that the primary research interest of the studies comprised four groups: 1) Improvement of image quality; 2) identification of the cardiac window vision plane; 3) quantification and analysis of cardiac functions, and; 4) detection and classification of cardiac diseases. The articles were categorized and grouped to show the main contributions of the literature to each type of ECHO. The results indicate that the Deep Learning (DL) methods presented the best results for the detection and segmentation of the heart walls, right and left atrium and ventricles, and classification of heart diseases using images/videos obtained by echocardiography. The models that used Convolutional Neural Network (CNN) and its variations showed the best results for all groups. The evidence produced by the results presented in the tabulation of the studies indicates that the DL contributed significantly to advances in echocardiogram automated analysis processes. Although several solutions were presented regarding the automated analysis of ECHO, this area of research still has great potential for further studies to improve the accuracy of results already known in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yujie完成签到 ,获得积分10
12秒前
cheney完成签到 ,获得积分10
22秒前
amberzyc应助欢呼亦绿采纳,获得10
22秒前
Hello应助只与你采纳,获得10
24秒前
orixero应助xun采纳,获得10
25秒前
26秒前
恒牙完成签到 ,获得积分10
37秒前
43秒前
只与你发布了新的文献求助10
49秒前
gwbk完成签到,获得积分10
55秒前
只与你完成签到,获得积分10
1分钟前
汪鸡毛完成签到 ,获得积分10
1分钟前
小燕子完成签到 ,获得积分10
1分钟前
lanxinge完成签到 ,获得积分10
2分钟前
薛家泰完成签到 ,获得积分10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
和风完成签到 ,获得积分10
3分钟前
欢呼亦绿完成签到,获得积分10
3分钟前
3分钟前
nlwsp完成签到 ,获得积分10
3分钟前
殷勤的紫槐完成签到,获得积分0
4分钟前
trophozoite完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
感动初蓝完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
jerry完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
neversay4ever完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293133
求助须知:如何正确求助?哪些是违规求助? 4443412
关于积分的说明 13831150
捐赠科研通 4326975
什么是DOI,文献DOI怎么找? 2375214
邀请新用户注册赠送积分活动 1370555
关于科研通互助平台的介绍 1335258