Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review

计算机科学 卷积神经网络 人工智能 医学诊断 深度学习 分割 机器学习 系统回顾 模式识别(心理学) 医学 放射科 梅德林 政治学 法学
作者
Vilson Soares de Siqueira,Moisés Marcos Borges,Rogério Gomes Furtado,Colandy Nunes Dourado,Ronaldo Martins da Costa
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:120: 102165-102165 被引量:26
标识
DOI:10.1016/j.artmed.2021.102165
摘要

The echocardiogram is a test that is widely used in Heart Disease Diagnoses. However, its analysis is largely dependent on the physician's experience. In this regard, artificial intelligence has become an essential technology to assist physicians. This study is a Systematic Literature Review (SLR) of primary state-of-the-art studies that used Artificial Intelligence (AI) techniques to automate echocardiogram analyses. Searches on the leading scientific article indexing platforms using a search string returned approximately 1400 articles. After applying the inclusion and exclusion criteria, 118 articles were selected to compose the detailed SLR. This SLR presents a thorough investigation of AI applied to support medical decisions for the main types of echocardiogram (Transthoracic, Transesophageal, Doppler, Stress, and Fetal). The article's data extraction indicated that the primary research interest of the studies comprised four groups: 1) Improvement of image quality; 2) identification of the cardiac window vision plane; 3) quantification and analysis of cardiac functions, and; 4) detection and classification of cardiac diseases. The articles were categorized and grouped to show the main contributions of the literature to each type of ECHO. The results indicate that the Deep Learning (DL) methods presented the best results for the detection and segmentation of the heart walls, right and left atrium and ventricles, and classification of heart diseases using images/videos obtained by echocardiography. The models that used Convolutional Neural Network (CNN) and its variations showed the best results for all groups. The evidence produced by the results presented in the tabulation of the studies indicates that the DL contributed significantly to advances in echocardiogram automated analysis processes. Although several solutions were presented regarding the automated analysis of ECHO, this area of research still has great potential for further studies to improve the accuracy of results already known in the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HUYAOWEI发布了新的文献求助10
刚刚
juzi_yugan完成签到,获得积分10
刚刚
刚刚
伊利丹发布了新的文献求助10
刚刚
1秒前
zz发布了新的文献求助10
2秒前
LEI发布了新的文献求助10
2秒前
2秒前
易安发布了新的文献求助20
3秒前
qiu发布了新的文献求助10
3秒前
充电宝应助明芷蝶采纳,获得10
3秒前
pumpkin完成签到,获得积分10
4秒前
yoyo发布了新的文献求助10
4秒前
Eric完成签到,获得积分20
5秒前
xiayiyi发布了新的文献求助30
7秒前
ll200207发布了新的文献求助10
7秒前
巷陌完成签到,获得积分10
7秒前
今后应助mookie采纳,获得10
7秒前
8秒前
8秒前
8秒前
10秒前
kingwill举报11求助涉嫌违规
10秒前
JamesPei应助苗条元霜采纳,获得10
10秒前
10秒前
10秒前
10秒前
闪闪怀柔完成签到,获得积分10
11秒前
hhhhhy发布了新的文献求助10
11秒前
xiaoputaor发布了新的文献求助10
12秒前
善学以致用应助韩霖采纳,获得10
12秒前
13秒前
juzi_yugan发布了新的文献求助10
13秒前
所所应助ll200207采纳,获得10
13秒前
王碱发布了新的文献求助10
14秒前
handada发布了新的文献求助10
14秒前
李拜天发布了新的文献求助10
14秒前
15秒前
15秒前
IceyCNZ发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594565
求助须知:如何正确求助?哪些是违规求助? 4680238
关于积分的说明 14813737
捐赠科研通 4647610
什么是DOI,文献DOI怎么找? 2535063
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521