Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review

计算机科学 卷积神经网络 人工智能 医学诊断 深度学习 分割 机器学习 系统回顾 模式识别(心理学) 医学 放射科 梅德林 政治学 法学
作者
Vilson Soares de Siqueira,Moisés Marcos Borges,Rogério Gomes Furtado,Colandy Nunes Dourado,Ronaldo Martins da Costa
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:120: 102165-102165 被引量:26
标识
DOI:10.1016/j.artmed.2021.102165
摘要

The echocardiogram is a test that is widely used in Heart Disease Diagnoses. However, its analysis is largely dependent on the physician's experience. In this regard, artificial intelligence has become an essential technology to assist physicians. This study is a Systematic Literature Review (SLR) of primary state-of-the-art studies that used Artificial Intelligence (AI) techniques to automate echocardiogram analyses. Searches on the leading scientific article indexing platforms using a search string returned approximately 1400 articles. After applying the inclusion and exclusion criteria, 118 articles were selected to compose the detailed SLR. This SLR presents a thorough investigation of AI applied to support medical decisions for the main types of echocardiogram (Transthoracic, Transesophageal, Doppler, Stress, and Fetal). The article's data extraction indicated that the primary research interest of the studies comprised four groups: 1) Improvement of image quality; 2) identification of the cardiac window vision plane; 3) quantification and analysis of cardiac functions, and; 4) detection and classification of cardiac diseases. The articles were categorized and grouped to show the main contributions of the literature to each type of ECHO. The results indicate that the Deep Learning (DL) methods presented the best results for the detection and segmentation of the heart walls, right and left atrium and ventricles, and classification of heart diseases using images/videos obtained by echocardiography. The models that used Convolutional Neural Network (CNN) and its variations showed the best results for all groups. The evidence produced by the results presented in the tabulation of the studies indicates that the DL contributed significantly to advances in echocardiogram automated analysis processes. Although several solutions were presented regarding the automated analysis of ECHO, this area of research still has great potential for further studies to improve the accuracy of results already known in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
渊思发布了新的文献求助10
刚刚
1秒前
楚晚宁发布了新的文献求助30
1秒前
谁偷了我的sci完成签到,获得积分10
1秒前
2秒前
情怀应助安静严青采纳,获得10
2秒前
英姑应助朴素勒采纳,获得30
2秒前
Orange应助俊秀而采纳,获得10
2秒前
2秒前
2秒前
3秒前
风车发布了新的文献求助10
3秒前
123456发布了新的文献求助10
6秒前
7秒前
破晓发布了新的文献求助30
8秒前
Prism_hua完成签到,获得积分10
8秒前
9秒前
半之半发布了新的文献求助10
11秒前
11秒前
Frank完成签到,获得积分10
11秒前
Lucas应助Ssyong采纳,获得10
11秒前
共享精神应助明理千雁采纳,获得10
11秒前
12秒前
123发布了新的文献求助10
12秒前
loopy完成签到,获得积分20
12秒前
13秒前
JamesPei应助qwe1108采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
13秒前
桐桐应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
优雅冷菱发布了新的文献求助10
14秒前
15秒前
22222发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721