DRGI: Deep Relational Graph Infomax for Knowledge Graph Completion

计算机科学 理论计算机科学 图形 图形数据库 最大熵 图形属性 人工智能 电压图 折线图 计算机网络 盲信号分离 频道(广播)
作者
Shuang Liang,Jie Shao,Dongyang Zhang,Jiasheng Zhang,Bin Cui
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:7
标识
DOI:10.1109/tkde.2021.3110898
摘要

Recently, many knowledge graph embedding models for knowledge graph completion have been proposed, ranging from the initial translation-based models such as TransE to recent convolutional neural network (CNN) models such as ConvE. However, these models only focus on semantic information of knowledge graph and neglect the natural graph structure information. Although graph convolutional network (GCN)-based models for knowledge graph embedding have been introduced to address this issue, they still suffer from fact incompleteness, resulting in the unconnectedness of knowledge graph. To solve this problem, we propose a novel model called deep relational graph infomax (DRGI) with mutual information (MI) maximization which takes the benefit of complete structure information and semantic information together. Specifically, the proposed DRGI consists of two encoders which are two identical adaptive relational graph attention networks (ARGATs), corresponding to catching semantic information and complete structure information respectively. Our method establishes new state-of-the-art on the standard datasets for knowledge graph completion. In addition, by exploring the complete structure information, DRGI embraces the merits of faster convergence speed over existing methods and better predictive performance for entities with small indegree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ypppp发布了新的文献求助10
1秒前
摆烂好爽发布了新的文献求助10
1秒前
田様应助phw2333采纳,获得20
2秒前
ling发布了新的文献求助10
2秒前
无花果应助jing采纳,获得20
3秒前
狄振家完成签到,获得积分10
4秒前
4秒前
高兴123发布了新的文献求助30
7秒前
silencegreen5完成签到 ,获得积分10
7秒前
糟糕的铁锤完成签到,获得积分0
7秒前
leicaixia完成签到 ,获得积分10
7秒前
Jasper应助ling采纳,获得10
8秒前
马拉疯兔子完成签到 ,获得积分10
10秒前
mcy01发布了新的文献求助10
10秒前
Jasper应助闻元杰采纳,获得10
15秒前
16秒前
16秒前
张雷应助vincy采纳,获得50
17秒前
zhang完成签到 ,获得积分10
18秒前
19秒前
22秒前
努力发布了新的文献求助10
24秒前
阿良完成签到,获得积分10
25秒前
香蕉觅云应助DrQin采纳,获得10
27秒前
Rondab应助努力退休小博士采纳,获得10
27秒前
情怀应助学习中勿扰采纳,获得10
28秒前
852应助djbj2022采纳,获得10
29秒前
32秒前
希望天下0贩的0应助驰驰采纳,获得10
32秒前
33秒前
坚定妙旋完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
36秒前
英姑应助dudu采纳,获得30
36秒前
phw2333发布了新的文献求助20
37秒前
37秒前
闻元杰发布了新的文献求助10
38秒前
受伤绿柏发布了新的文献求助10
39秒前
40秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309