清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyhn发布了新的文献求助10
26秒前
月亮与六便士完成签到 ,获得积分10
37秒前
铜豌豆完成签到 ,获得积分10
52秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
想睡觉亦寻完成签到 ,获得积分10
1分钟前
1分钟前
wangye完成签到 ,获得积分10
1分钟前
2分钟前
___淡完成签到 ,获得积分10
2分钟前
HuiHui完成签到,获得积分10
2分钟前
3分钟前
3分钟前
小草完成签到,获得积分10
3分钟前
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
weilei完成签到,获得积分10
5分钟前
6分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
7分钟前
何琳发布了新的文献求助10
7分钟前
顺利千兰发布了新的文献求助200
7分钟前
无花果应助何琳采纳,获得10
7分钟前
搜集达人应助何琳采纳,获得10
7分钟前
Jasper应助何琳采纳,获得10
7分钟前
在水一方应助何琳采纳,获得10
7分钟前
领导范儿应助何琳采纳,获得10
7分钟前
英姑应助何琳采纳,获得10
7分钟前
落沧完成签到 ,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
9分钟前
9分钟前
傻傻的芝发布了新的文献求助10
9分钟前
9分钟前
毓雅完成签到,获得积分10
10分钟前
10分钟前
科目三应助科研通管家采纳,获得20
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015724
关于积分的说明 8871671
捐赠科研通 2703441
什么是DOI,文献DOI怎么找? 1482290
科研通“疑难数据库(出版商)”最低求助积分说明 685177
邀请新用户注册赠送积分活动 679951