TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhijiu发布了新的文献求助10
1秒前
雨雨完成签到,获得积分10
1秒前
精明的寒天完成签到,获得积分10
2秒前
3秒前
3秒前
wangqq发布了新的文献求助10
3秒前
善学以致用应助rwewe采纳,获得10
5秒前
Miyo完成签到,获得积分10
5秒前
zlx发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
RATHER完成签到,获得积分10
8秒前
局外人完成签到,获得积分10
8秒前
尹汉通完成签到 ,获得积分10
9秒前
小幼芷完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
沧海一声笑完成签到,获得积分10
12秒前
12秒前
重要亿先完成签到,获得积分10
12秒前
君无邪发布了新的文献求助10
13秒前
white_out发布了新的文献求助10
13秒前
13秒前
14秒前
矮小的战斗机完成签到,获得积分10
15秒前
16秒前
Dr大壮完成签到,获得积分10
16秒前
Salt_fish发布了新的文献求助30
17秒前
畅快的静芙完成签到,获得积分10
18秒前
华仔应助yuhan采纳,获得30
18秒前
19秒前
孟辰凡发布了新的文献求助10
19秒前
20秒前
20秒前
君无邪完成签到,获得积分10
20秒前
zlx完成签到,获得积分10
20秒前
搜集达人应助YYY666采纳,获得10
20秒前
所所应助专注大米采纳,获得30
20秒前
酷波er应助小小采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243