TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰菱发布了新的文献求助10
刚刚
Zxj发布了新的文献求助10
刚刚
呱呱完成签到 ,获得积分10
刚刚
1秒前
星先生发布了新的文献求助10
1秒前
1秒前
2秒前
活力谷菱发布了新的文献求助10
2秒前
3秒前
zhenglingying发布了新的文献求助10
3秒前
3秒前
ZS-发布了新的文献求助10
3秒前
3秒前
Goldfish完成签到,获得积分10
3秒前
5U完成签到,获得积分10
3秒前
悠悠发布了新的文献求助10
3秒前
Invariant完成签到,获得积分10
3秒前
3秒前
wshwx发布了新的文献求助50
4秒前
星辰大海应助HCl采纳,获得10
4秒前
LSC完成签到,获得积分10
4秒前
4秒前
隐形曼青应助miaomiao采纳,获得10
5秒前
SOTA完成签到,获得积分20
5秒前
5秒前
tt完成签到,获得积分10
5秒前
慕子默完成签到,获得积分10
5秒前
隐形曼青应助rixinsu采纳,获得10
6秒前
6秒前
6秒前
6秒前
Owen应助漂亮的傀斗采纳,获得10
6秒前
科研通AI6应助xiaoliu采纳,获得10
6秒前
深情安青应助ww采纳,获得10
6秒前
怕黑的傲蕾完成签到,获得积分10
7秒前
LYL发布了新的文献求助10
7秒前
7秒前
科研通AI6应助拾年采纳,获得10
7秒前
murphy发布了新的文献求助10
7秒前
害怕的尔竹完成签到,获得积分10
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498