TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BWRESEARCH应助wonder123采纳,获得10
1秒前
jackson完成签到,获得积分10
2秒前
3秒前
史小霜发布了新的文献求助10
4秒前
Dmooou完成签到,获得积分10
5秒前
YXY完成签到,获得积分10
5秒前
慕青应助舒适的半芹采纳,获得10
6秒前
chenanqi完成签到,获得积分10
13秒前
李爱国应助yugy采纳,获得30
15秒前
15秒前
xiaojie发布了新的文献求助10
18秒前
秋夏山发布了新的文献求助10
19秒前
19秒前
去去去去发布了新的文献求助10
21秒前
城南发布了新的文献求助10
24秒前
26秒前
29秒前
CATH完成签到 ,获得积分10
30秒前
清秀化蛹发布了新的文献求助30
32秒前
西子完成签到,获得积分10
32秒前
Heisnn应助sniper111采纳,获得50
34秒前
史小霜发布了新的文献求助10
35秒前
齐多达完成签到 ,获得积分10
35秒前
顾矜应助xiaojie采纳,获得10
35秒前
秋夏山完成签到,获得积分10
36秒前
42秒前
肆_完成签到 ,获得积分10
44秒前
45秒前
48秒前
温柔的听寒完成签到,获得积分10
49秒前
KCl完成签到 ,获得积分10
51秒前
1234完成签到,获得积分10
53秒前
酷波er应助蓝天采纳,获得10
57秒前
蓝天应助LiWeipeng采纳,获得10
58秒前
1分钟前
Verity应助YY采纳,获得10
1分钟前
123完成签到,获得积分10
1分钟前
蓝天应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645638
关于积分的说明 14675849
捐赠科研通 4586812
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1461007