TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evan完成签到,获得积分10
刚刚
刚刚
所所应助hyt采纳,获得10
1秒前
ddl7完成签到,获得积分10
1秒前
ding应助辛勤依凝采纳,获得10
1秒前
柠檬完成签到,获得积分10
2秒前
Nancy完成签到 ,获得积分10
3秒前
超级的丹琴完成签到,获得积分10
3秒前
jzt12138发布了新的文献求助10
3秒前
小文完成签到,获得积分10
4秒前
茉莉花发布了新的文献求助10
4秒前
liu完成签到,获得积分10
4秒前
4秒前
等待的花卷完成签到 ,获得积分10
5秒前
干净的映秋完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
金鼠探测仪完成签到,获得积分10
8秒前
8秒前
小丸子完成签到 ,获得积分10
10秒前
10秒前
杨朝辉发布了新的文献求助10
10秒前
11秒前
QJH发布了新的文献求助10
11秒前
12秒前
冉冉发布了新的文献求助10
12秒前
小丁完成签到 ,获得积分10
12秒前
Evan发布了新的文献求助10
12秒前
嘉冉完成签到,获得积分10
12秒前
13秒前
陈新宇关注了科研通微信公众号
13秒前
13秒前
13秒前
14秒前
14秒前
丘比特应助失眠毛衣采纳,获得10
14秒前
丘比特应助顾年采纳,获得10
14秒前
含蓄安南完成签到 ,获得积分10
14秒前
luck完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735371
求助须知:如何正确求助?哪些是违规求助? 5360228
关于积分的说明 15329581
捐赠科研通 4879569
什么是DOI,文献DOI怎么找? 2622080
邀请新用户注册赠送积分活动 1571231
关于科研通互助平台的介绍 1528068