TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的白桃完成签到 ,获得积分10
刚刚
DentistRui发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
Udo发布了新的文献求助10
1秒前
3秒前
ppbk完成签到 ,获得积分10
5秒前
王橹杰完成签到 ,获得积分10
7秒前
8秒前
yyyyy发布了新的文献求助20
8秒前
完美世界应助八月采纳,获得10
9秒前
hms完成签到 ,获得积分10
19秒前
20秒前
Mark发布了新的文献求助10
24秒前
Gin完成签到 ,获得积分20
24秒前
24秒前
量子星尘发布了新的文献求助10
29秒前
疯狂的迪子完成签到 ,获得积分10
30秒前
摩卡题目发布了新的文献求助10
30秒前
31秒前
羊羊发布了新的文献求助10
36秒前
37秒前
清脆小土豆完成签到 ,获得积分10
38秒前
爱学习的小李完成签到 ,获得积分10
41秒前
47秒前
49秒前
张路完成签到 ,获得积分10
49秒前
yif发布了新的文献求助10
54秒前
雄鹰般的女人完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
57秒前
58秒前
个性的荆应助科研通管家采纳,获得10
1分钟前
个性的荆应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652825
求助须知:如何正确求助?哪些是违规求助? 4788443
关于积分的说明 15061739
捐赠科研通 4811262
什么是DOI,文献DOI怎么找? 2573820
邀请新用户注册赠送积分活动 1529599
关于科研通互助平台的介绍 1488335