亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助fengyun1990采纳,获得10
1秒前
隐形曼青应助alex采纳,获得10
4秒前
6秒前
8秒前
yihanghh完成签到 ,获得积分10
9秒前
早日毕业脱离苦海完成签到 ,获得积分10
10秒前
yuanyuan发布了新的文献求助10
11秒前
HSD发布了新的文献求助10
11秒前
11秒前
13秒前
wtl发布了新的文献求助10
15秒前
苏幕遮发布了新的文献求助10
16秒前
zz完成签到,获得积分10
16秒前
大气亦巧发布了新的文献求助10
17秒前
JamesPei应助wtl采纳,获得10
24秒前
打打应助苏幕遮采纳,获得10
27秒前
Juvenilesy完成签到 ,获得积分10
27秒前
安静的棉花糖完成签到 ,获得积分10
34秒前
CipherSage应助sss采纳,获得10
42秒前
beiwei完成签到 ,获得积分10
50秒前
51秒前
sss完成签到,获得积分10
52秒前
眯眯眼的钢笔完成签到,获得积分10
56秒前
sss发布了新的文献求助10
57秒前
gao0505完成签到,获得积分10
59秒前
YZChen完成签到,获得积分10
1分钟前
zr237618发布了新的文献求助10
1分钟前
张晓芮完成签到 ,获得积分10
1分钟前
1分钟前
神秘玩家完成签到 ,获得积分10
1分钟前
fengyun1990发布了新的文献求助10
1分钟前
1分钟前
渺渺完成签到 ,获得积分10
1分钟前
fengyun1990完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898