亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅倪发布了新的文献求助10
4秒前
英姑应助火星上向珊采纳,获得10
5秒前
7秒前
liuxiaohui完成签到,获得积分10
11秒前
17秒前
17秒前
21秒前
于涵艺发布了新的文献求助10
21秒前
梅倪完成签到,获得积分10
22秒前
春和完成签到 ,获得积分10
28秒前
万能图书馆应助于涵艺采纳,获得10
30秒前
乐乐应助土书采纳,获得10
33秒前
沙茶酱菜卷完成签到 ,获得积分10
38秒前
Owen应助科研通管家采纳,获得10
42秒前
42秒前
BowieHuang应助科研通管家采纳,获得10
43秒前
无极微光应助科研通管家采纳,获得20
43秒前
43秒前
量子星尘发布了新的文献求助10
48秒前
番茄酱完成签到 ,获得积分10
49秒前
49秒前
Paris发布了新的文献求助10
50秒前
罗伊黄发布了新的文献求助10
52秒前
nnn7完成签到,获得积分10
53秒前
55秒前
桃花源的瓶起子完成签到 ,获得积分10
1分钟前
1分钟前
HTniconico完成签到 ,获得积分10
1分钟前
壮观匪发布了新的文献求助10
1分钟前
1分钟前
江夏清完成签到,获得积分10
1分钟前
1分钟前
An发布了新的文献求助10
1分钟前
心语完成签到 ,获得积分10
1分钟前
有魅力的半仙完成签到,获得积分20
1分钟前
mm完成签到 ,获得积分10
1分钟前
1分钟前
有魅力的半仙关注了科研通微信公众号
1分钟前
1分钟前
Rose发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582179
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500155
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795