TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
汉堡包应助想游泳的鹰采纳,获得10
3秒前
小马奔奔完成签到,获得积分10
6秒前
liyingbin发布了新的文献求助10
6秒前
漂亮水绿完成签到,获得积分10
6秒前
脑洞疼应助xiaoliang采纳,获得10
7秒前
7秒前
8秒前
han发布了新的文献求助10
9秒前
王12发布了新的文献求助10
10秒前
11秒前
SciGPT应助momochichu采纳,获得10
11秒前
天栽奇才小高完成签到 ,获得积分10
11秒前
CC发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助kshpq采纳,获得10
13秒前
liyingbin完成签到,获得积分10
13秒前
14秒前
14秒前
花里胡哨hh159完成签到,获得积分20
15秒前
颜靖仇完成签到,获得积分10
15秒前
16秒前
Rosie发布了新的文献求助10
17秒前
18秒前
蒋瑞轩发布了新的文献求助10
19秒前
小鱼儿完成签到,获得积分10
20秒前
旧戏人发布了新的文献求助10
20秒前
shi发布了新的文献求助10
23秒前
23秒前
xiaoliang完成签到,获得积分10
24秒前
24秒前
24秒前
饶丹完成签到,获得积分10
25秒前
轻松的惜芹应助海棠依旧采纳,获得200
25秒前
WSYang完成签到,获得积分10
26秒前
Akim应助shen采纳,获得10
28秒前
28秒前
DT发布了新的文献求助10
29秒前
赖晨靓发布了新的文献求助10
31秒前
酷酷的爆米花完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976253
求助须知:如何正确求助?哪些是违规求助? 3520405
关于积分的说明 11203301
捐赠科研通 3257028
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877755
科研通“疑难数据库(出版商)”最低求助积分说明 806521