已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting

计算机科学 自编码 深度学习 人工智能 概括性 航程(航空) 机器学习 人工神经网络 流量(计算机网络) 嵌入 数据挖掘 计算机安全 心理学 材料科学 复合材料 心理治疗师
作者
Kyohoon Jin,JeongA Wi,Eunju Lee,Shin-Jin Kang,Soo Kyun Kim,Youngbin Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115738-115738 被引量:36
标识
DOI:10.1016/j.eswa.2021.115738
摘要

Traffic flow prediction has various applications such as in traffic systems and autonomous driving. Road conditions have become increasingly complex, and this, in turn, has increased the demand for effective traffic volume predictions. Statistical models and conventional machine-learning models have been employed for this purpose more recently, deep learning has been widely used. However, most deep learning-based models require data additional to traffic information, such as information on adjacent roads or road weather conditions. Therefore, the effectiveness of these models is typically restricted to certain roads. Even if such information were available, there is a possibility of bias toward a specific road. To overcome this limitation, based on the bidirectional encoder representations from transformers (BERT), we propose trafficBERT, a model that is suitable for use on various roads because it is pre-trained with large-scale traffic data. Our model captures time-series information by employing multi-head self-attention in place of the commonly used recurrent neural network. In addition, the autocorrelation between the states before and after each time step is determined more efficiently via factorized embedding parameterization. Our results indicate that trafficBERT outperforms models trained using data for specific roads, as well as commonly used statistical and deep learning models, such as Stacked Autoencoder, and models based on long short-term memory, in terms of accuracy. • Proposing a deep learning model to predict long-range traffic flow forecasting. • TrafficBERT is a modifies of the BERT structure for traffic flow forecasting. • Increasing the generality of the model by pre-training data on various roads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的静竹完成签到,获得积分10
1秒前
Jasper应助神勇的女孩采纳,获得10
2秒前
强强发布了新的文献求助10
2秒前
ljr完成签到 ,获得积分10
3秒前
leo0531完成签到 ,获得积分10
4秒前
llli完成签到,获得积分10
4秒前
科研通AI2S应助曙光采纳,获得10
4秒前
minna完成签到,获得积分20
6秒前
DSUNNY完成签到 ,获得积分0
6秒前
tietie完成签到,获得积分20
6秒前
S-Lab Sonic完成签到,获得积分10
6秒前
拥抱完成签到 ,获得积分10
10秒前
NexusExplorer应助大米采纳,获得10
12秒前
cindy完成签到,获得积分10
13秒前
欢呼凡英完成签到,获得积分10
13秒前
顾矜应助llli采纳,获得10
13秒前
无语的巨人完成签到 ,获得积分10
13秒前
14秒前
爱撒娇的大开完成签到 ,获得积分10
14秒前
可爱的函函应助S-Lab Sonic采纳,获得10
15秒前
Lupin完成签到 ,获得积分10
16秒前
赫连依秋完成签到,获得积分10
17秒前
Mic应助f1sh采纳,获得10
18秒前
ABJ完成签到 ,获得积分10
18秒前
polarisla完成签到,获得积分10
19秒前
大包鸡完成签到 ,获得积分10
20秒前
微笑襄完成签到 ,获得积分10
20秒前
长长的衣服完成签到 ,获得积分10
21秒前
21秒前
lu完成签到 ,获得积分10
21秒前
水水加油完成签到 ,获得积分10
23秒前
24秒前
生命科学的第一推动力完成签到 ,获得积分10
25秒前
turtle完成签到 ,获得积分10
27秒前
30秒前
zxt发布了新的文献求助10
31秒前
Fortune发布了新的文献求助10
32秒前
不配玩耍的菜狗完成签到 ,获得积分10
33秒前
XIEQ发布了新的文献求助10
33秒前
查不到我就吃饭完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681