Artificial Intelligence Analysis of Mandibular Movements Enables Accurate Detection of Phasic Sleep Bruxism in OSA Patients: A Pilot Study

医学 接收机工作特性 多导睡眠图 夜磨牙症 咀嚼力 下巴 置信区间 肌电图 物理医学与康复 呼吸暂停 口腔正畸科 内科学 解剖
作者
Jean‐Benoît Martinot,Nhat‐Nam Le‐Dong,Valérie Cuthbert,Stéphane Denison,David Gozal,Gilles Lavigne,Jean‐Louis Pépin
出处
期刊:Nature and Science of Sleep [Dove Medical Press]
卷期号:Volume 13: 1449-1459 被引量:24
标识
DOI:10.2147/nss.s320664
摘要

Sleep bruxism (SBx) activity is classically identified by capturing masseter and/or temporalis masticatory muscles electromyographic activity (EMG-MMA) during in-laboratory polysomnography (PSG). We aimed to identify stereotypical mandibular jaw movements (MJM) in patients with SBx and to develop rhythmic masticatory muscles activities (RMMA) automatic detection using an artificial intelligence (AI) based approach.This was a prospective, observational study of 67 suspected obstructive sleep apnea (OSA) patients in whom PSG with masseter EMG was performed with simultaneous MJM recordings. The system used to collect MJM consisted of a small hardware device attached on the chin that communicates to a cloud-based infrastructure. An extreme gradient boosting (XGB) multiclass classifier was trained on 79,650 10-second epochs of MJM data from the 39 subjects with a history of SBx targeting 3 labels: RMMA episodes (n=1072), micro-arousals (n=1311), and MJM occurring at the breathing frequency (n=77,267).Validated on unseen data from 28 patients, the model showed a very good epoch-by-epoch agreement (Kappa = 0.799) and balanced accuracy of 86.6% was found for the MJM events when using RMMA standards. The RMMA episodes were detected with a sensitivity of 84.3%. Class-wise receiver operating characteristic (ROC) curve analysis confirmed the well-balanced performance of the classifier for RMMA (ROC area under the curve: 0.98, 95% confidence interval [CI] 0.97-0.99). There was good agreement between the MJM analytic model and manual EMG signal scoring of RMMA (median bias -0.80 events/h, 95% CI -9.77 to 2.85).SBx can be reliably identified, quantified, and characterized with MJM when subjected to automated analysis supported by AI technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可佳发布了新的文献求助10
刚刚
沐沐发布了新的文献求助10
刚刚
1秒前
丁鹏笑完成签到 ,获得积分0
1秒前
Sweger发布了新的文献求助10
1秒前
务实大白发布了新的文献求助10
3秒前
仁爱听露完成签到,获得积分10
3秒前
饺子完成签到,获得积分10
4秒前
5秒前
wdt发布了新的文献求助10
6秒前
直率绮梅发布了新的文献求助10
8秒前
务实大白完成签到,获得积分10
9秒前
morena发布了新的文献求助10
10秒前
科研通AI5应助橙子采纳,获得10
10秒前
在水一方应助nnnnn采纳,获得10
10秒前
10秒前
10秒前
12秒前
碎片完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
xzy998发布了新的文献求助10
15秒前
wdt完成签到,获得积分20
15秒前
科目三应助请叫我朱杰采纳,获得10
17秒前
沐沐完成签到,获得积分20
17秒前
爱因斯敏完成签到,获得积分10
17秒前
时光发布了新的文献求助10
18秒前
18秒前
研友_8WM4Kn应助清浅采纳,获得10
19秒前
下个文献发布了新的文献求助10
20秒前
JEFFREYJIA发布了新的文献求助30
20秒前
20秒前
Dobby发布了新的文献求助30
21秒前
大胆砖头完成签到 ,获得积分10
23秒前
lucky发布了新的文献求助10
23秒前
25秒前
阿辉发布了新的文献求助10
25秒前
汤圆呢醒醒完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728107
求助须知:如何正确求助?哪些是违规求助? 3273263
关于积分的说明 9980551
捐赠科研通 2988639
什么是DOI,文献DOI怎么找? 1639696
邀请新用户注册赠送积分活动 778961
科研通“疑难数据库(出版商)”最低求助积分说明 747838