全球导航卫星系统应用
惯性测量装置
稳健性(进化)
计算机科学
惯性导航系统
计算机视觉
传感器融合
卫星系统
人工智能
同时定位和映射
全球定位系统
惯性参考系
全球导航卫星系统增强
计量单位
卫星导航
实时计算
移动机器人
机器人
电信
生物化学
化学
物理
量子力学
基因
作者
Qiguang Su,Qian Tang,Yi Li,Lianchao Liu
标识
DOI:10.1109/icoias53694.2021.00039
摘要
In recent years, multi-sensor fusion algorithms have been widely used in simultaneous localization and mapping (SLAM) issues. Global navigation satellite systems (GNSS), camera and inertial measurement unit (IMU) is often used in localization framework. Common sensor configuration includes vision-only, vision-inertial, inertial-GNSS and so on. Due to almost every sensor can be vulnerable in a given environment, we still encounter challenges in improving robustness of the simultaneous localization and mapping system. In order to solve this problem to some extent, we propose a new approach to enhance robustness of the system. We design an adaptive localization framework to switch location strategy based on the failure mode of global navigation satellite system. Experiment shows the absolute trajectory error (APE) of proposed method is better comparing with the current mainstream algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI