Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method

光伏系统 支持向量机 趋同(经济学) 均方误差 计算机科学 聚类分析 粒子群优化 数学优化 核(代数) 算法 统计 数学 人工智能 工程类 经济增长 组合数学 电气工程 经济
作者
Bo Gu,Huiqiang Shen,Xiaohui Lei,Hao Hu,Xinyu Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:299: 117291-117291 被引量:114
标识
DOI:10.1016/j.apenergy.2021.117291
摘要

The primary means to promote grid-connected photovoltaic power generation is through accurately forecasting the power output from photovoltaic power stations. This paper proposes a method for day-ahead photovoltaic power forecasting (PPF) and uncertainty analysis using fuzzy c-means (FCM), whale optimization algorithm (WOA), least squares support vector machine (LSSVM), and non-parametric kernel density estimation (NPKDE). The FCM clustering algorithm was used to cluster historical data on numerical weather prediction and photovoltaic power stations, whereby daily data sharing similar meteorological information were clustered into one class. The rapid convergence speed and high convergence accuracy of the WOA were used to optimize the penalty factor and kernel function width of the LSSVM model; this was done to improve the calculation speed and forecasting accuracy of the LSSVM model. The WOA-LSSVM forecasting model was trained using the clustered numerical weather prediction and historical data of a photovoltaic power station. This was subsequently utilized to forecast day-ahead photovoltaic power. The NPKDE method was used to accurately calculate the probability density distribution of forecasting error and the confidence interval of the day-ahead PPF. The root mean square error (RMSE) values of the forecasting power of the WOA-LSSVM, PSO-LSSVM, LSSVM, LSTM and PSO-BP models are 2.55%, 3.00%, 5.60%, 6.03% and 3.18%, respectively, and the calculation results show that the forecasting accuracy of the WOA-LSSVM was higher relative to other models including PSO-LSSVM, LSSVM, LSTM and PSO-BP. Moreover, the NPKDE method was able to accurately describe the probability density distribution of the forecasting error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易安完成签到 ,获得积分10
1秒前
1秒前
hfy完成签到,获得积分10
1秒前
1秒前
1秒前
景茶茶完成签到,获得积分10
1秒前
我是老大应助赫连立果采纳,获得10
2秒前
熠旅发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
斯文败类应助遥感小虫采纳,获得10
2秒前
KK发布了新的文献求助10
2秒前
2秒前
Hill完成签到,获得积分10
3秒前
搜集达人应助吃猫的鱼采纳,获得10
3秒前
Attention发布了新的文献求助10
3秒前
4秒前
差不多小姐完成签到,获得积分10
4秒前
氧泡泡发布了新的文献求助10
4秒前
天天快乐应助咩咩羊采纳,获得10
5秒前
5秒前
5秒前
thadzhou发布了新的文献求助10
6秒前
6秒前
欧阳世宏发布了新的文献求助10
6秒前
吃光月亮发布了新的文献求助10
6秒前
7秒前
熠旅完成签到,获得积分10
7秒前
zjq发布了新的文献求助10
7秒前
7秒前
pluto应助陌路孤星采纳,获得10
8秒前
洋葱王子发布了新的文献求助10
8秒前
香蕉觅云应助anliluo采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
9秒前
yuefeng发布了新的文献求助10
9秒前
李健应助科研通管家采纳,获得20
9秒前
FSJ发布了新的文献求助10
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3653134
求助须知:如何正确求助?哪些是违规求助? 3217096
关于积分的说明 9715730
捐赠科研通 2924955
什么是DOI,文献DOI怎么找? 1601971
邀请新用户注册赠送积分活动 754750
科研通“疑难数据库(出版商)”最低求助积分说明 733209