植绒(纹理)
数学
极限(数学)
欧拉路径
先验与后验
数学物理
数学分析
应用数学
统计物理学
物理
拉格朗日
量子力学
认识论
哲学
作者
Roberto Natalini,Thierry Paul
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:27 (5): 2873-2873
被引量:8
标识
DOI:10.3934/dcdsb.2021164
摘要
<p style='text-indent:20px;'>In this note, we consider generalizations of the Cucker-Smale dynamical system and we derive rigorously in Wasserstein's type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equation introduced in [<xref ref-type="bibr" rid="b13">13</xref>]. Unlike previous results on the Cucker-Smale model, our approach is not based on the empirical measures, but, using an Eulerian point of view introduced in [<xref ref-type="bibr" rid="b9">9</xref>] in the Hamiltonian setting, we show the limit providing explicit constants. Moreover, for non strictly Cucker-Smale particles dynamics, we also give an insight on what induces a flocking behavior of the solution to the Vlasov equation to the - unknown a priori - flocking properties of the original particle system.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI