Machine learning-enabled prediction of wind turbine energy yield losses due to general blade leading edge erosion

腐蚀 涡轮机 海上风力发电 风力发电 前沿 环境科学 海洋工程 涡轮叶片 可再生能源 表面粗糙度 GSM演进的增强数据速率 空气动力学 计算流体力学 结构工程 工程类 气象学 地质学 机械工程 航空航天工程 材料科学 物理 复合材料 古生物学 电气工程 电信
作者
Lorenzo Cappugi,Alessio Castorrini,Aldo Bonfiglioli,Edmondo Minisci,M. Sergio Campobasso
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:245: 114567-114567 被引量:47
标识
DOI:10.1016/j.enconman.2021.114567
摘要

Blade leading edge erosion is acknowledged to significantly reduce the energy yield of wind turbines. The problem is particularly severe for offshore installations, due to faster erosion progression boosted by harsh environmental conditions. This study presents and demonstrates an experimentally validated simulation-based technology for rapidly and accurately estimating wind turbine energy yield losses due to general leading edge erosion. The technology combines the predictive accuracy of two- and three-dimensional Navier–Stokes computational fluid dynamics with the runtime reductions enabled by artificial neural networks and wind turbine engineering codes using the blade element momentum theory. The main demonstration is based on the assessment of the annual energy yield of the National Renewable Energy Laboratory 5 MW reference turbine affected by leading edge erosion damage of increasing severity, considering damages based on available laser scans and previous leading edge erosion analysis. Results also include sensitivity studies of the energy loss to the wind characteristics of the installation site. It is found that the annual energy loss varies between about 0.3 and 4%, depending on the damage severity and the site wind characteristics. The study also illustrates the necessity of resolving the geometry of eroded leading edges rather than accounting for the effects of erosion with surrogate models, since, after an initial increase of distributed surface roughness, erosion yields leading edge geometry alterations causing aerodynamic losses exceeding those due to the loss of boundary layer laminarity consequent to roughness-induced transition. The presented technology enables estimating in a few minutes the amount of energy lost to erosion for many-turbine wind farms, and offers a key tool for predictive maintenance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
疯狂的曲奇完成签到 ,获得积分10
1秒前
初夏发布了新的文献求助10
1秒前
小二郎应助luoyn采纳,获得30
1秒前
精明涵双完成签到,获得积分10
2秒前
mymEN发布了新的文献求助10
2秒前
kaly完成签到,获得积分20
3秒前
4秒前
kaly发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
丘比特应助体贴怜翠采纳,获得10
10秒前
胖虎发布了新的文献求助10
11秒前
11秒前
dy发布了新的文献求助10
14秒前
14秒前
qwer发布了新的文献求助10
15秒前
努努完成签到 ,获得积分10
15秒前
羊加橙发布了新的文献求助10
15秒前
翱翔者完成签到,获得积分10
16秒前
16秒前
牧童完成签到,获得积分10
17秒前
科研通AI5应助平凡的世界采纳,获得30
18秒前
疑问师完成签到,获得积分10
19秒前
kw完成签到 ,获得积分10
19秒前
陈飞飞发布了新的文献求助10
20秒前
20秒前
21秒前
bkagyin应助dy采纳,获得10
21秒前
橙子快跑发布了新的文献求助10
21秒前
23秒前
纯真的白风完成签到,获得积分20
24秒前
24秒前
老板娘完成签到,获得积分10
25秒前
Gigi发布了新的文献求助10
25秒前
25秒前
体贴怜翠发布了新的文献求助10
28秒前
打打应助Gigi采纳,获得10
28秒前
杳鸢应助眼睛大老姆采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583640
求助须知:如何正确求助?哪些是违规求助? 3152886
关于积分的说明 9494504
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735428
科研通“疑难数据库(出版商)”最低求助积分说明 721228