Search for ABO3 Type Ferroelectric Perovskites with Targeted Multi-Properties by Machine Learning Strategies

铁电性 机器学习 材料科学 人工智能 电介质 居里温度 计算机科学 算法 凝聚态物理 物理 光电子学 铁磁性
作者
Pengcheng Xu,Dongping Chang,Tian Lu,Long Li,Minjie Li,Wencong Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (21): 5038-5049 被引量:36
标识
DOI:10.1021/acs.jcim.1c00566
摘要

Ferroelectric perovskites are one of the most promising functional materials due to the pyroelectric and piezoelectric effect. In the practical applications of ferroelectric perovskites, it is often necessary to meet the requirements of multiple properties. In this work, a multiproperties machine learning strategy was proposed to accelerate the discovery and design of new ferroelectric ABO3-type perovskites. First, a classification model was constructed with data collected from publications to distinguish ferroelectric and nonferroelectric perovskites. The classification accuracies of LOOCV and the test set are 87.29% and 86.21%, respectively. Then, two machine learning strategies, Machine-Learning Workflow and SISSO, were used to construct the regression models to predict the specific surface area (SSA), band gap (Eg), Curie temperature (Tc), and dielectric loss (tan δ) of ABO3-type perovskites. The correlation coefficients of LOOCV in the optimal models for SSA, Eg, and Tc are 0.935, 0.891, and 0.971, respectively, while the correlation coefficient of the predicted and experimental values of the SISSO model for tan δ prediction could reach 0.913. On the basis of the models, 20 ABO3 ferroelectric perovskites with three different application prospects were screened out with the required properties, which could be explained by the patterns between the important descriptors and the properties by using SHAP. Furthermore, the constructed models were developed into web servers for the researchers to accelerate the rational design and discovery of ABO3 ferroelectric perovskites with desired multiple properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光香寒完成签到 ,获得积分10
刚刚
吃个大西瓜完成签到,获得积分10
刚刚
踏实以丹完成签到,获得积分10
刚刚
认真的雪完成签到,获得积分10
刚刚
刚刚
1秒前
skycool发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
吕培森发布了新的文献求助10
2秒前
木辰发布了新的文献求助10
3秒前
3秒前
3秒前
YQ发布了新的文献求助10
3秒前
lishenstan发布了新的文献求助10
4秒前
lkl完成签到,获得积分10
4秒前
4秒前
4秒前
ZG发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Ava应助ZS采纳,获得10
6秒前
霏冉发布了新的文献求助10
6秒前
充电宝应助等待洙采纳,获得10
7秒前
7秒前
鸽鸽完成签到,获得积分10
8秒前
找文献的天才狗完成签到,获得积分10
9秒前
史超完成签到,获得积分10
9秒前
last炫神丶发布了新的文献求助10
9秒前
彩色橘子完成签到,获得积分20
9秒前
10秒前
大方的若山应助xiaosee采纳,获得10
10秒前
wuwuwu1wu完成签到,获得积分20
10秒前
10秒前
11秒前
ertredffg发布了新的文献求助10
11秒前
英勇的鱼完成签到,获得积分20
11秒前
烟花应助饱满绮波采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143314
求助须知:如何正确求助?哪些是违规求助? 2794476
关于积分的说明 7811257
捐赠科研通 2450676
什么是DOI,文献DOI怎么找? 1303944
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386