Search for ABO3 Type Ferroelectric Perovskites with Targeted Multi-Properties by Machine Learning Strategies

铁电性 机器学习 材料科学 人工智能 电介质 居里温度 计算机科学 凝聚态物理 物理 光电子学 铁磁性
作者
Pengcheng Xu,Dongping Chang,Tian Lu,Long Li,Minjie Li,Wencong Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (21): 5038-5049 被引量:42
标识
DOI:10.1021/acs.jcim.1c00566
摘要

Ferroelectric perovskites are one of the most promising functional materials due to the pyroelectric and piezoelectric effect. In the practical applications of ferroelectric perovskites, it is often necessary to meet the requirements of multiple properties. In this work, a multiproperties machine learning strategy was proposed to accelerate the discovery and design of new ferroelectric ABO3-type perovskites. First, a classification model was constructed with data collected from publications to distinguish ferroelectric and nonferroelectric perovskites. The classification accuracies of LOOCV and the test set are 87.29% and 86.21%, respectively. Then, two machine learning strategies, Machine-Learning Workflow and SISSO, were used to construct the regression models to predict the specific surface area (SSA), band gap (Eg), Curie temperature (Tc), and dielectric loss (tan δ) of ABO3-type perovskites. The correlation coefficients of LOOCV in the optimal models for SSA, Eg, and Tc are 0.935, 0.891, and 0.971, respectively, while the correlation coefficient of the predicted and experimental values of the SISSO model for tan δ prediction could reach 0.913. On the basis of the models, 20 ABO3 ferroelectric perovskites with three different application prospects were screened out with the required properties, which could be explained by the patterns between the important descriptors and the properties by using SHAP. Furthermore, the constructed models were developed into web servers for the researchers to accelerate the rational design and discovery of ABO3 ferroelectric perovskites with desired multiple properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助kelo采纳,获得10
刚刚
2秒前
fff完成签到,获得积分10
4秒前
晒黑的雪碧完成签到,获得积分10
4秒前
跳跃的鹏飞完成签到 ,获得积分10
4秒前
烟花应助hyhyhyhy采纳,获得10
6秒前
科研通AI5应助ZYN采纳,获得10
8秒前
科研通AI5应助ZYN采纳,获得10
8秒前
黄花花发布了新的文献求助10
8秒前
酶没美镁完成签到,获得积分10
9秒前
精明寒松完成签到 ,获得积分10
9秒前
充电宝应助莹亮的星空采纳,获得10
9秒前
princeyxx完成签到,获得积分10
11秒前
Ache完成签到,获得积分10
14秒前
16秒前
斯南完成签到,获得积分10
17秒前
18秒前
hyhyhyhy发布了新的文献求助10
19秒前
杜兰特发布了新的文献求助10
20秒前
乐观沛白完成签到,获得积分10
20秒前
共享精神应助晒黑的雪碧采纳,获得10
21秒前
CDH完成签到,获得积分10
21秒前
烟花应助小徐医生采纳,获得10
22秒前
风中的蘑菇完成签到 ,获得积分10
24秒前
华仔应助hyhyhyhy采纳,获得10
24秒前
25秒前
曲聋五完成签到 ,获得积分0
25秒前
31秒前
33秒前
35秒前
领导范儿应助科研通管家采纳,获得10
36秒前
Akim应助科研通管家采纳,获得10
37秒前
大个应助科研通管家采纳,获得10
37秒前
ED应助科研通管家采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得30
37秒前
小蘑菇应助jinxiao采纳,获得10
37秒前
Hello应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629