Inference for change points in high-dimensional data via selfnormalization

数学 检验统计量 统计假设检验 统计的 应用数学 算法 修边 渐近分析 推论 统计 计算机科学 人工智能 操作系统
作者
Runmin Wang,Changbo Zhu,Stanislav Volgushev,Xiaofeng Shao
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:50 (2) 被引量:16
标识
DOI:10.1214/21-aos2127
摘要

This article considers change-point testing and estimation for a sequence of high-dimensional data. In the case of testing for a mean shift for high-dimensional independent data, we propose a new test which is based on U-statistic in Chen and Qin (Ann. Statist. 38 (2010) 808–835) and utilizes the self-normalization principle (Shao J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 (2010) 343–366; Shao and Zhang J. Amer. Statist. Assoc. 105 (2010) 1228–1240). Our test targets dense alternatives in the high-dimensional setting and involves no tuning parameters. To extend to change-point testing for high-dimensional time series, we introduce a trimming parameter and formulate a self-normalized test statistic with trimming to accommodate the weak temporal dependence. On the theory front we derive the limiting distributions of self-normalized test statistics under both the null and alternatives for both independent and dependent high-dimensional data. At the core of our asymptotic theory, we obtain weak convergence of a sequential U-statistic based process for high-dimensional independent data, and weak convergence of sequential trimmed U-statistic based processes for high-dimensional linear processes, both of which are of independent interests. Additionally, we illustrate how our tests can be used in combination with wild binary segmentation to estimate the number and location of multiple change points. Numerical simulations demonstrate the competitiveness of our proposed testing and estimation procedures in comparison with several existing methods in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吨吨发布了新的文献求助10
2秒前
Eastonlyzhang发布了新的文献求助10
2秒前
何小茶发布了新的文献求助10
3秒前
完美世界应助Peng采纳,获得10
3秒前
康康发布了新的文献求助10
5秒前
6秒前
10秒前
fhbc发布了新的文献求助10
12秒前
chri驳回了puhu应助
14秒前
14秒前
思源应助夏叶采纳,获得10
15秒前
Eastonlyzhang完成签到,获得积分10
16秒前
16秒前
shelemi发布了新的文献求助10
17秒前
HCLonely举报聆听求助涉嫌违规
18秒前
pluto应助Eifuly采纳,获得30
18秒前
小于发布了新的文献求助10
18秒前
科研張应助酷酷珠采纳,获得20
21秒前
23秒前
123应助清雨丶赤羽采纳,获得10
24秒前
每天都很忙完成签到 ,获得积分10
25秒前
贪玩的元彤完成签到,获得积分10
25秒前
32秒前
34秒前
Jasper应助Octozhang采纳,获得50
35秒前
39秒前
onto完成签到,获得积分10
43秒前
44秒前
不吃脑花发布了新的文献求助10
45秒前
48秒前
华仔应助科研通管家采纳,获得30
48秒前
我是老大应助心灵美语兰采纳,获得10
48秒前
彭于晏应助科研通管家采纳,获得10
48秒前
研友_VZG7GZ应助科研通管家采纳,获得30
48秒前
48秒前
SciGPT应助科研通管家采纳,获得10
49秒前
火山羊发布了新的文献求助10
52秒前
53秒前
菜菜带带完成签到,获得积分10
54秒前
HaiFeng完成签到,获得积分10
54秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527726
捐赠科研通 2621578
什么是DOI,文献DOI怎么找? 1433864
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637