A Physarum-inspired algorithm for logistics optimization: From the perspective of effective distance

计算机科学 数学优化 粒子群优化 趋同(经济学) 缩小 元启发式 遗传算法 过程(计算) 算法 机器学习 数学 经济增长 操作系统 经济 程序设计语言
作者
Dong Chu,MA Wahab,Zhenlin Yang,Jingyu Li,Yong Deng,Kang Hao Cheong
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:64: 100890-100890 被引量:8
标识
DOI:10.1016/j.swevo.2021.100890
摘要

The logistics optimization problem has received immense attention in recent years. The existing optimization methods generally put forward distribution strategies based on physical distance or topological distance. Hence, they have inherent limitations on effectively optimizing the logistics network in real-life situations. In order to address these concerns, this paper proposes a novel optimization model based on the concept of effective distance. We first define the effective distance in logistics networks, and then implement the network optimization based on effective distance with a Physarum-inspired algorithm that overcomes the slow convergence rate of exact algorithms. The superiority of our proposed model is that suppliers can cooperate with each other to realize cost reduction, while products from different suppliers on each link remain differentiated. Numerical examples of a logistics network with multiple origin-destination pairs have shown that our proposed model (which considers both economies of scale and cooperation among suppliers in the distribution process) provides a reliable and effective cost minimization strategy. The computational performance of our proposed algorithm is also better than other algorithms such as the particle swarm optimization and genetic algorithm, as indicated in our experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
答辩发布了新的文献求助10
1秒前
1秒前
1秒前
大模型应助阁主采纳,获得10
1秒前
2秒前
3秒前
3秒前
popcorn完成签到,获得积分10
3秒前
3秒前
3秒前
twotwomi完成签到,获得积分10
3秒前
ly完成签到,获得积分20
4秒前
ChenYifei完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Lucas应助来日方长采纳,获得10
5秒前
chang发布了新的文献求助10
5秒前
小巫发布了新的文献求助10
6秒前
周娅敏发布了新的文献求助10
7秒前
华仔应助答辩采纳,获得10
7秒前
caixiayin发布了新的文献求助10
7秒前
7秒前
威武的冷风关注了科研通微信公众号
8秒前
8秒前
8秒前
8秒前
9秒前
科研通AI2S应助奋斗若风采纳,获得10
9秒前
ly发布了新的文献求助10
9秒前
10秒前
xiang完成签到,获得积分10
10秒前
李爱国应助迷恋采纳,获得10
10秒前
在摆烂的dog完成签到,获得积分10
11秒前
星辰大海应助刘源采纳,获得10
11秒前
小巫完成签到,获得积分10
12秒前
ironsilica完成签到,获得积分10
12秒前
土豪的土豆完成签到 ,获得积分10
12秒前
orixero应助风趣的鸡翅采纳,获得10
13秒前
独步旋碟发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650