A Physarum-inspired algorithm for logistics optimization: From the perspective of effective distance

计算机科学 数学优化 粒子群优化 趋同(经济学) 缩小 元启发式 遗传算法 过程(计算) 算法 机器学习 数学 经济增长 操作系统 经济 程序设计语言
作者
Dong Chu,MA Wahab,Zhenlin Yang,Jingyu Li,Yong Deng,Kang Hao Cheong
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:64: 100890-100890 被引量:8
标识
DOI:10.1016/j.swevo.2021.100890
摘要

The logistics optimization problem has received immense attention in recent years. The existing optimization methods generally put forward distribution strategies based on physical distance or topological distance. Hence, they have inherent limitations on effectively optimizing the logistics network in real-life situations. In order to address these concerns, this paper proposes a novel optimization model based on the concept of effective distance. We first define the effective distance in logistics networks, and then implement the network optimization based on effective distance with a Physarum-inspired algorithm that overcomes the slow convergence rate of exact algorithms. The superiority of our proposed model is that suppliers can cooperate with each other to realize cost reduction, while products from different suppliers on each link remain differentiated. Numerical examples of a logistics network with multiple origin-destination pairs have shown that our proposed model (which considers both economies of scale and cooperation among suppliers in the distribution process) provides a reliable and effective cost minimization strategy. The computational performance of our proposed algorithm is also better than other algorithms such as the particle swarm optimization and genetic algorithm, as indicated in our experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的煜城完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助150
刚刚
浮游应助ACE采纳,获得10
刚刚
刚刚
刚刚
华仔应助杨情缘采纳,获得10
刚刚
paper发布了新的文献求助200
1秒前
2秒前
幽默觅翠完成签到,获得积分10
2秒前
FX发布了新的文献求助10
2秒前
可爱的函函应助小步快跑采纳,获得10
3秒前
ning_qing发布了新的文献求助10
3秒前
可爱的函函应助淳于文昊采纳,获得10
3秒前
LYW完成签到,获得积分10
3秒前
福尔摩云完成签到,获得积分10
4秒前
西柚完成签到,获得积分10
4秒前
邓佳鑫Alan应助CHENISTRY采纳,获得20
4秒前
古古怪界丶黑大帅完成签到,获得积分10
5秒前
enterdawn应助电磁波采纳,获得10
5秒前
6秒前
溫蒂完成签到,获得积分10
6秒前
zJx丶完成签到,获得积分10
6秒前
_Mr_K_完成签到 ,获得积分10
6秒前
传奇3应助AOI0504采纳,获得10
7秒前
7890733发布了新的文献求助10
7秒前
8秒前
9秒前
天天快乐应助大方的新筠采纳,获得10
9秒前
FX完成签到,获得积分10
9秒前
9秒前
浮游应助ACE采纳,获得10
10秒前
今后应助CHDB采纳,获得15
10秒前
10秒前
11秒前
11秒前
晓人儿完成签到,获得积分10
11秒前
11秒前
小马甲应助DAYAN采纳,获得10
11秒前
浮游应助ACE采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095428
求助须知:如何正确求助?哪些是违规求助? 4308538
关于积分的说明 13424622
捐赠科研通 4135366
什么是DOI,文献DOI怎么找? 2265484
邀请新用户注册赠送积分活动 1268868
关于科研通互助平台的介绍 1204869