Design of a new effector recognition specificity in a plant NLR immune receptor by molecular engineering of its integrated decoy domain

效应器 诱饵 计算生物学 生物 烟草 细胞生物学 遗传学 受体 基因
作者
Stella Césari,Yuxuan Xi,Nathalie Declerck,Véronique Chalvon,Léa Mammri,Martine Pugnière,Corinne Henriquet,Karine de Guillen,André Padilla,Thomas Kroj
标识
DOI:10.1101/2021.04.24.441256
摘要

SUMMARY Plant nucleotide-binding and leucine-rich repeat domain proteins (NLRs) are immune sensors that specifically recognize pathogen effectors and induce immune responses. Designing artificial NLRs with new effector recognition specificities is a promising prospect for sustainable, knowledge-driven crop protection. However, such strategies are hampered by the complexity of NLR function. Here, we tested whether molecular engineering of the integrated decoy domain (ID) of an NLR could extend its recognition spectrum to a new effector. To this aim, we relied on the detailed molecular knowledge of the recognition of distinct Magnaporthe oryzae MAX ( Magnaporthe AVRs and ToxB-like) effectors by the rice NLRs RGA5 and Pikp-1. For both NLRs, effector recognition involves physical binding to their HMA (Heavy Metal-Associated) IDs. However, AVR-PikD, the effector recognized by Pikp-1, binds to a completely different surface of the HMA domain compared to AVR-Pia and AVR1-CO39, recognized by RGA5. By introducing into the HMA domain of RGA5 the residues of the Pikp-1 HMA domain involved in AVR-PikD binding, we created a high-affinity binding surface for this new effector. In the Nicotiana benthamiana heterologous system, RGA5 variants carrying this engineered binding surface still recognize AVR-Pia and AVR1-CO39, but also perceive the new ligand, AVR-PikD, resulting in the activation of immune responses. Therefore, our study provides a proof of concept for the design of new effector recognition specificities in NLRs through molecular engineering of IDs. However, it pinpoints significant knowledge gaps that limit the full deployment of this NLR-ID engineering strategy and provides hypotheses for future research on this topic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石石石发布了新的文献求助10
刚刚
追梦完成签到 ,获得积分10
刚刚
gyusbjshaxb完成签到,获得积分10
1秒前
橙橙完成签到,获得积分10
1秒前
东东呀发布了新的文献求助10
1秒前
wanci应助侯晓宝采纳,获得10
2秒前
2秒前
SC发布了新的文献求助10
2秒前
lee完成签到,获得积分10
3秒前
3秒前
coco完成签到,获得积分10
4秒前
5秒前
llll发布了新的文献求助10
6秒前
斯文败类应助Niaaa采纳,获得10
6秒前
小蘑菇应助zxh采纳,获得10
6秒前
6秒前
lee发布了新的文献求助10
6秒前
等待的小海豚完成签到,获得积分10
7秒前
7秒前
京润过发布了新的文献求助10
7秒前
情怀应助合适的梦菡采纳,获得10
7秒前
慕青应助hhvvvvv采纳,获得30
7秒前
7秒前
8秒前
8秒前
文静菠萝发布了新的文献求助10
8秒前
乐乐应助圆圆采纳,获得10
8秒前
红绿灯的黄完成签到,获得积分10
9秒前
10秒前
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
10秒前
郑哈哈发布了新的文献求助30
10秒前
10秒前
肥逗完成签到 ,获得积分10
11秒前
11秒前
会飞的猪完成签到,获得积分10
11秒前
刻苦以寒发布了新的文献求助10
12秒前
奋斗天德完成签到 ,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144039
求助须知:如何正确求助?哪些是违规求助? 2795729
关于积分的说明 7816229
捐赠科研通 2451740
什么是DOI,文献DOI怎么找? 1304659
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419