带材弯曲
材料科学
异质结
量子隧道
电介质
光电子学
电场
凝聚态物理
石墨烯
单层
电子结构
密度泛函理论
纳米技术
物理
量子力学
作者
Borna Pielić,Dino Novko,Iva Šrut Rakić,Jiaqi Cai,Marin Petrović,Robin Ohmann,Nataša Vujičić,Mario Basletić,Carsten Busse,Marko Kralj
标识
DOI:10.1021/acsami.1c15412
摘要
Growth of 2D materials under ultrahigh-vacuum (UHV) conditions allows for an in situ characterization of samples with direct spectroscopic insight. Heteroepitaxy of transition-metal dichalcogenides (TMDs) in UHV remains a challenge for integration of several different monolayers into new functional systems. In this work, we epitaxially grow lateral WS2-MoS2 and vertical WS2/MoS2 heterostructures on graphene. By means of scanning tunneling spectroscopy (STS), we first examined the electronic structure of monolayer MoS2, WS2, and WS2/MoS2 vertical heterostructure. Moreover, we investigate a band bending in the vicinity of the narrow one-dimensional (1D) interface of the WS2-MoS2 lateral heterostructure and mirror twin boundary (MTB) in the WS2/MoS2 vertical heterostructure. Density functional theory (DFT) is used for the calculation of the band structures, as well as for the density of states (DOS) maps at the interfaces. For the WS2-MoS2 lateral heterostructure, we confirm type-II band alignment and determine the corresponding depletion regions, charge densities, and the electric field at the interface. For the MTB, we observe a symmetric upward bend bending and relate it to the dielectric screening of graphene affecting dominantly the MoS2 layer. Quasi-freestanding heterostructures with sharp interfaces, large built-in electric field, and narrow depletion region widths are proper candidates for future designing of electronic and optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI