缩放比例
计算机科学
并行计算
共享内存
巨量平行
线性比例尺
分布式存储器
并行算法
数学
几何学
大地测量学
地理
作者
Dipayan Datta,Mark S. Gordon
标识
DOI:10.1021/acs.jctc.1c00389
摘要
A parallel algorithm is described for the coupled-cluster singles and doubles method augmented with a perturbative correction for triple excitations [CCSD(T)] using the resolution-of-the-identity (RI) approximation for two-electron repulsion integrals (ERIs). The algorithm bypasses the storage of four-center ERIs by adopting an integral-direct strategy. The CCSD amplitude equations are given in a compact quasi-linear form by factorizing them in terms of amplitude-dressed three-center intermediates. A hybrid MPI/OpenMP parallelization scheme is employed, which uses the OpenMP-based shared memory model for intranode parallelization and the MPI-based distributed memory model for internode parallelization. Parallel efficiency has been optimized for all terms in the CCSD amplitude equations. Two different algorithms have been implemented for the rate-limiting terms in the CCSD amplitude equations that entail O(NO2NV4) and O(NO3NV3)-scaling computational costs, where NO and NV denote the number of correlated occupied and virtual orbitals, respectively. One of the algorithms assembles the four-center ERIs requiring NV4 and NO2NV2-scaling memory costs in a distributed manner on a number of MPI ranks, while the other algorithm completely bypasses the assembling of quartic memory-scaling ERIs and thus largely reduces the memory demand. It is demonstrated that the former memory-expensive algorithm is faster on a few hundred cores, while the latter memory-economic algorithm shows a better strong scaling in the limit of a few thousand cores. The program is shown to exhibit a near-linear scaling, in particular for the compute-intensive triples correction step, on up to 8000 cores. The performance of the program is demonstrated via calculations involving molecules with 24–51 atoms and up to 1624 atomic basis functions. As the first application, the complete basis set (CBS) limit for the interaction energy of the π-stacked uracil dimer from the S66 data set has been investigated. This work reports the first calculation of the interaction energy at the CCSD(T)/aug-cc-pVQZ level without local orbital approximation. The CBS limit for the CCSD correlation contribution to the interaction energy was found to be −8.01 kcal/mol, which agrees very well with the value −7.99 kcal/mol reported by Schmitz, Hättig, and Tew [ Phys. Chem. Chem. Phys. 2014, 16, 22167−22178]. The CBS limit for the total interaction energy was estimated to be −9.64 kcal/mol.
科研通智能强力驱动
Strongly Powered by AbleSci AI