亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scheduling of AGV with Group Operation Area in Automated Terminal by Hybrid Genetic Algorithm

调度(生产过程) 作业车间调度 元启发式 自动引导车 计算机科学 遗传算法 数学优化 地铁列车时刻表 工程类 实时计算 算法 数学 人工智能 操作系统
作者
Zhongxiang Shen,Chengji Liang,Mitsuo Gen
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 427-442
标识
DOI:10.1007/978-3-030-79203-9_33
摘要

Scheduling is one of the very important tools for treating a complex combinatorial optimization problem (COP) model, where it can have a major impact on the productivity of a manufacturing process. Most models of scheduling are confirmed as NP-hard or NP-complete problems. The aim at scheduling is to find a schedule with the best performance through selecting resources for each operation, the sequence of each resource and the beginning time. Genetic algorithm (GA) is one of the most efficient methods among metaheuristics for solving the real-world manufacturing problems. In this paper, we survey the literature review on the optimization of Automate Guide Vehicle (AGV) transportation efficiency in the terminal, especially how to reduce the waiting time of AGV. From the point of AGV road blocking, the scheduling mode of group operation area is proposed. In order to minimize the maximum completion time of AGV, an AGV scheduling optimization model is established considering the interference constraints and AGV congestion in the actual operation of the terminal. Hybrid Genetic Algorithm with Fuzzy Logic Controller (HGA-FLC) is used to simulate the behavior of AGVs, and different scale examples are designed to solve the problem. Compared with GA, the experimental results show that this algorithm can effectively improve the efficiency of AGVs operation, reduce the waiting time and number of jams of AGV, which provide the basis of the actual operation of the terminal.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdu_sf发布了新的文献求助10
4秒前
5秒前
11秒前
mrhughas发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
23秒前
35秒前
Koala04发布了新的文献求助10
41秒前
共享精神应助抹茶采纳,获得10
42秒前
mrhughas完成签到,获得积分10
54秒前
田様应助张尧摇摇摇采纳,获得10
1分钟前
1分钟前
1分钟前
Koala04完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
闪明火龙果完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
今后应助rebeycca采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
AliEmbark完成签到,获得积分10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457