SAResNet: self-attention residual network for predicting DNA-protein binding

计算机科学 残余物 管道(软件) 人工智能 机器学习 趋同(经济学) 序列(生物学) 数据挖掘 深度学习 学习迁移 人工神经网络 算法 生物 经济 遗传学 程序设计语言 经济增长
作者
Long-Chen Shen,Yan Liu,Jiangning Song,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:30
标识
DOI:10.1093/bib/bbab101
摘要

Abstract Knowledge of the specificity of DNA-protein binding is crucial for understanding the mechanisms of gene expression, regulation and gene therapy. In recent years, deep-learning-based methods for predicting DNA-protein binding from sequence data have achieved significant success. Nevertheless, the current state-of-the-art computational methods have some drawbacks associated with the use of limited datasets with insufficient experimental data. To address this, we propose a novel transfer learning-based method, termed SAResNet, which combines the self-attention mechanism and residual network structure. More specifically, the attention-driven module captures the position information of the sequence, while the residual network structure guarantees that the high-level features of the binding site can be extracted. Meanwhile, the pre-training strategy used by SAResNet improves the learning ability of the network and accelerates the convergence speed of the network during transfer learning. The performance of SAResNet is extensively tested on 690 datasets from the ChIP-seq experiments with an average AUC of 92.0%, which is 4.4% higher than that of the best state-of-the-art method currently available. When tested on smaller datasets, the predictive performance is more clearly improved. Overall, we demonstrate that the superior performance of DNA-protein binding prediction on DNA sequences can be achieved by combining the attention mechanism and residual structure, and a novel pipeline is accordingly developed. The proposed methodology is generally applicable and can be used to address any other sequence classification problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freeaway完成签到,获得积分10
1秒前
六个核桃完成签到,获得积分10
2秒前
4秒前
bkagyin应助多金采纳,获得10
4秒前
yznfly应助xuejiajia采纳,获得30
5秒前
5秒前
6秒前
阴转晴完成签到,获得积分20
6秒前
8秒前
白斯特发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
14秒前
14秒前
田様应助笑对人生采纳,获得10
17秒前
阴转晴发布了新的文献求助10
19秒前
19秒前
医学牲发布了新的文献求助10
19秒前
善良的沛白完成签到,获得积分10
19秒前
20秒前
逆旅如行人完成签到,获得积分10
25秒前
不想上班发布了新的文献求助10
25秒前
安详忆梅发布了新的文献求助10
26秒前
30秒前
lt0217发布了新的文献求助10
31秒前
学学术术小小白白完成签到,获得积分10
32秒前
笑对人生发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
36秒前
你香发布了新的文献求助10
38秒前
lins发布了新的文献求助10
38秒前
萧水白应助高大的白莲采纳,获得50
39秒前
梁凉凉发布了新的文献求助10
39秒前
40秒前
烟花应助比巴卜采纳,获得10
40秒前
Skyyeats发布了新的文献求助10
41秒前
深情安青应助医学牲采纳,获得10
41秒前
啊呀完成签到,获得积分10
41秒前
lt0217完成签到,获得积分10
42秒前
鲁西西发布了新的文献求助10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303