Daily leaf area index from photosynthetically active radiation for long term records of canopy structure and leaf phenology

生长季节 辐照度 底纹 归一化差异植被指数 农学 树冠 遥感 每年落叶的
作者
Cheryl Rogers,Jing M. Chen,Holly Croft,Alemu Gonsamo,Xiangzhong Luo,Paul Bartlett,R. M. Staebler
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:304-305: 108407-108407 被引量:3
标识
DOI:10.1016/j.agrformet.2021.108407
摘要

Leaf area index (LAI) is a critical biophysical indicator that describes foliage abundance in ecosystems. An accurate and continuous estimation of LAI is therefore desirable to quantify ecosystem status and function (e.g. carbon and water exchange between the land surface and the atmosphere). However, deriving accurate LAI measurements at regular temporal intervals remains challenging, requiring either destructive sampling or manual collection of canopy gap fraction measurements at discrete time intervals. In this study, we present four methods to obtain continuous LAI data, simply derived from above and below canopy measurements of photosynthetically active radiation (PAR) at the Borden Forest Research Station from 1999 to 2018. We compared LAI derived using the four PAR-based methods to independent measurements of LAI from optical methods and the MODIS satellite LAI product. LAI derived from all four PAR-based methods captured the seasonal changes in observed and remotely sensed LAI and showed a close linear correspondence with one another (R2 of 0.55 to 0.76 compared to MODIS LAI, and R2 of 0.78 to 0.84 compared to LAI-2000 measurements). A PAR-based method using Miller's Integral theorem showed the strongest linear relationship with LAI-2000 measurements (R2=0.84, p<0.001, SE=0.40). In many years MODIS LAI indicated an earlier start of season and earlier end of season than the daily PAR-based LAI datasets showing systematic biases in the MODIS assessment of growing season. The four PAR-based LAI methods outlined in this study provide an LAI dataset of unprecedented temporal resolution. These methods will allow precise determination of phenological events, improve leaf to canopy scaling in process-based models, and provide valuable insight into dynamic vegetation responses to global climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助zhui采纳,获得10
刚刚
芒果发布了新的文献求助10
刚刚
1秒前
前百年253完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
xiaoguai完成签到 ,获得积分10
3秒前
甜蜜晓绿发布了新的文献求助10
5秒前
5秒前
Bruce发布了新的文献求助10
5秒前
6秒前
6秒前
MYhang完成签到,获得积分10
6秒前
wxd发布了新的文献求助10
8秒前
8秒前
哈哈发布了新的文献求助10
9秒前
9秒前
西哈哈发布了新的文献求助10
9秒前
科研通AI5应助lili采纳,获得10
9秒前
郑嘻嘻完成签到,获得积分10
9秒前
9秒前
FEI完成签到,获得积分20
9秒前
11秒前
英姑应助顺利的乐枫采纳,获得10
11秒前
11秒前
11秒前
12秒前
木子加y完成签到 ,获得积分10
13秒前
小蘑菇应助Sally采纳,获得10
13秒前
命运的X号完成签到,获得积分10
13秒前
yangyong发布了新的文献求助10
14秒前
14秒前
图图烤肉完成签到,获得积分10
15秒前
ajiaxi完成签到,获得积分10
15秒前
Bruce完成签到,获得积分10
16秒前
英俊的水彤完成签到 ,获得积分10
16秒前
刘金金完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794