Explainable multimodal machine learning model for classifying pregnancy drug safety

药品 计算机科学 怀孕 机器学习 药物警戒 医学 更安全的 聚类分析 人工智能 数据挖掘 药理学 计算机安全 遗传学 生物
作者
Guy Shtar,Lior Rokach,Bracha Shapira,Elkana Kohn,Matitiahu Berkovitch,Maya Berlin
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (4): 1102-1109 被引量:10
标识
DOI:10.1093/bioinformatics/btab769
摘要

Teratogenic drugs can cause severe fetal malformation and therefore have critical impact on the health of the fetus, yet the teratogenic risks are unknown for most approved drugs. This article proposes an explainable machine learning model for classifying pregnancy drug safety based on multimodal data and suggests an orthogonal ensemble for modeling multimodal data. To train the proposed model, we created a set of labeled drugs by processing over 100 000 textual responses collected by a large teratology information service. Structured textual information is incorporated into the model by applying clustering analysis to textual features.We report an area under the receiver operating characteristic curve (AUC) of 0.891 using cross-validation and an AUC of 0.904 for cross-expert validation. Our findings suggest the safety of two drugs during pregnancy, Varenicline and Mebeverine, and suggest that Meloxicam, an NSAID, is of higher risk; according to existing data, the safety of these three drugs during pregnancy is unknown. We also present a web-based application that enables physicians to examine a specific drug and its risk factors.The code and data is available from https://github.com/goolig/drug_safety_pregnancy_prediction.git.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鱼叮叮完成签到,获得积分10
1秒前
张三完成签到,获得积分10
1秒前
2秒前
晓晓发布了新的文献求助10
2秒前
sometimesawake完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
猪猪hero发布了新的文献求助30
5秒前
百川海纳6完成签到,获得积分10
5秒前
6秒前
阿俊完成签到 ,获得积分10
7秒前
呐呐完成签到,获得积分10
7秒前
8秒前
轻松的代云完成签到,获得积分10
8秒前
深海soda完成签到,获得积分10
9秒前
9秒前
复杂若男发布了新的文献求助10
9秒前
9秒前
10秒前
YuchaoJia发布了新的文献求助10
10秒前
英姑应助开心的爆米花采纳,获得10
11秒前
郭政飞完成签到,获得积分10
12秒前
roclie发布了新的文献求助10
12秒前
enoki发布了新的文献求助10
13秒前
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
怎么说应助科研通管家采纳,获得10
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
LEMONS应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
z11发布了新的文献求助10
15秒前
灿灿应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352