Time-Series Growth Prediction Model Based on U-Net and Machine Learning in Arabidopsis

播种 拟南芥 产量(工程) 人工智能 机器学习 编码器 深度学习 数学 计算机科学 生物 农学 统计 突变体 冶金 基因 生物化学 材料科学
作者
Sungyul Chang,Unseok Lee,Min Jeong Hong,Yeong Deuk Jo,Jin‐Baek Kim
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:12 被引量:12
标识
DOI:10.3389/fpls.2021.721512
摘要

Yield prediction for crops is essential information for food security. A high-throughput phenotyping platform (HTPP) generates the data of the complete life cycle of a plant. However, the data are rarely used for yield prediction because of the lack of quality image analysis methods, yield data associated with HTPP, and the time-series analysis method for yield prediction. To overcome limitations, this study employed multiple deep learning (DL) networks to extract high-quality HTTP data, establish an association between HTTP data and the yield performance of crops, and select essential time intervals using machine learning (ML). The images of Arabidopsis were taken 12 times under environmentally controlled HTPP over 23 days after sowing (DAS). First, the features from images were extracted using DL network U-Net with SE-ResXt101 encoder and divided into early (15-21 DAS) and late (∼21-23 DAS) pre-flowering developmental stages using the physiological characteristics of the Arabidopsis plant. Second, the late pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based only on a portion of the early pre-flowering stage (17-21 DAS). This was confirmed using an additional biological experiment (P < 0.01). Finally, the projected area (PA) was estimated into fresh weight (FW), and the correlation coefficient between FW and predicted FW was calculated as 0.85. This was the first study that analyzed time-series data to predict the FW of related but different developmental stages and predict the PA. The results of this study were informative and enabled the understanding of the FW of Arabidopsis or yield of leafy plants and total biomass consumed in vertical farming. Moreover, this study highlighted the reduction of time-series data for examining interesting traits and future application of time-series analysis in various HTPPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕擎发布了新的文献求助20
刚刚
义气的一德完成签到,获得积分10
刚刚
2秒前
liu完成签到,获得积分10
2秒前
YuLu完成签到 ,获得积分10
3秒前
3秒前
淡淡的若冰应助一包辣条采纳,获得10
3秒前
Max关闭了Max文献求助
4秒前
4秒前
芽衣完成签到 ,获得积分10
8秒前
八九发布了新的文献求助10
9秒前
寻道图强应助lxlcx采纳,获得30
9秒前
客官们帮帮忙完成签到 ,获得积分10
10秒前
huco完成签到,获得积分10
10秒前
12秒前
陈小桥完成签到,获得积分10
13秒前
cc完成签到,获得积分10
15秒前
靓丽紫真完成签到 ,获得积分10
15秒前
15秒前
妩媚的夜柳完成签到 ,获得积分10
16秒前
冷月芳华发布了新的文献求助10
18秒前
滕擎完成签到,获得积分10
18秒前
shy完成签到,获得积分10
22秒前
冷月芳华完成签到,获得积分10
23秒前
Max发布了新的文献求助50
24秒前
上官若男应助Franky采纳,获得10
24秒前
哈哈哈哈哈完成签到,获得积分10
27秒前
liuchenyang完成签到 ,获得积分10
29秒前
研友_8WMQ5n完成签到,获得积分10
30秒前
30秒前
迅速的鬼神完成签到,获得积分10
30秒前
MHCL完成签到 ,获得积分10
32秒前
所所应助YY采纳,获得10
32秒前
33秒前
35秒前
ZeSheng完成签到,获得积分10
35秒前
易槐完成签到,获得积分10
36秒前
36秒前
Franky发布了新的文献求助10
37秒前
呆萌的小海豚完成签到,获得积分10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175