Time-Series Growth Prediction Model Based on U-Net and Machine Learning in Arabidopsis

播种 拟南芥 产量(工程) 人工智能 机器学习 编码器 深度学习 数学 计算机科学 生物 农学 统计 基因 突变体 生物化学 冶金 材料科学
作者
Sungyul Chang,Unseok Lee,Min Jeong Hong,Yeong Deuk Jo,Jin‐Baek Kim
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:12 被引量:12
标识
DOI:10.3389/fpls.2021.721512
摘要

Yield prediction for crops is essential information for food security. A high-throughput phenotyping platform (HTPP) generates the data of the complete life cycle of a plant. However, the data are rarely used for yield prediction because of the lack of quality image analysis methods, yield data associated with HTPP, and the time-series analysis method for yield prediction. To overcome limitations, this study employed multiple deep learning (DL) networks to extract high-quality HTTP data, establish an association between HTTP data and the yield performance of crops, and select essential time intervals using machine learning (ML). The images of Arabidopsis were taken 12 times under environmentally controlled HTPP over 23 days after sowing (DAS). First, the features from images were extracted using DL network U-Net with SE-ResXt101 encoder and divided into early (15-21 DAS) and late (∼21-23 DAS) pre-flowering developmental stages using the physiological characteristics of the Arabidopsis plant. Second, the late pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based only on a portion of the early pre-flowering stage (17-21 DAS). This was confirmed using an additional biological experiment (P < 0.01). Finally, the projected area (PA) was estimated into fresh weight (FW), and the correlation coefficient between FW and predicted FW was calculated as 0.85. This was the first study that analyzed time-series data to predict the FW of related but different developmental stages and predict the PA. The results of this study were informative and enabled the understanding of the FW of Arabidopsis or yield of leafy plants and total biomass consumed in vertical farming. Moreover, this study highlighted the reduction of time-series data for examining interesting traits and future application of time-series analysis in various HTPPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡完成签到 ,获得积分10
1秒前
Rondab应助敏感妙松采纳,获得80
2秒前
姜露萍发布了新的文献求助30
2秒前
张雯思发布了新的文献求助10
2秒前
2秒前
你吼发布了新的文献求助10
3秒前
Hhbbb完成签到 ,获得积分10
4秒前
重重完成签到 ,获得积分10
5秒前
zjx完成签到,获得积分10
6秒前
可爱归尘发布了新的文献求助10
7秒前
上官若男应助天边外采纳,获得10
8秒前
9秒前
10秒前
111发布了新的文献求助100
13秒前
睡醒了发布了新的文献求助30
14秒前
14秒前
14秒前
橙银完成签到,获得积分10
14秒前
清爽代芹完成签到,获得积分10
15秒前
小U发布了新的文献求助10
15秒前
16秒前
zz完成签到,获得积分10
16秒前
an完成签到,获得积分20
16秒前
张雯思发布了新的文献求助10
17秒前
徐州檀完成签到 ,获得积分10
17秒前
爆米花应助li采纳,获得10
18秒前
罗氏集团发布了新的文献求助10
18秒前
hhr完成签到 ,获得积分10
18秒前
halo发布了新的文献求助10
19秒前
Moiraisonline完成签到,获得积分10
20秒前
浅沫juanjuan完成签到 ,获得积分10
22秒前
打打应助an采纳,获得10
22秒前
23秒前
Murphy_H完成签到,获得积分10
23秒前
23秒前
24秒前
anan完成签到 ,获得积分10
24秒前
在水一方应助Drogoo采纳,获得10
25秒前
Akim应助Drogoo采纳,获得10
25秒前
共享精神应助Drogoo采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075