Time-Series Growth Prediction Model Based on U-Net and Machine Learning in Arabidopsis

播种 拟南芥 产量(工程) 人工智能 机器学习 编码器 深度学习 数学 计算机科学 生物 农学 统计 突变体 冶金 基因 生物化学 材料科学
作者
Sungyul Chang,Unseok Lee,Min Jeong Hong,Yeong Deuk Jo,Jin‐Baek Kim
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:12 被引量:12
标识
DOI:10.3389/fpls.2021.721512
摘要

Yield prediction for crops is essential information for food security. A high-throughput phenotyping platform (HTPP) generates the data of the complete life cycle of a plant. However, the data are rarely used for yield prediction because of the lack of quality image analysis methods, yield data associated with HTPP, and the time-series analysis method for yield prediction. To overcome limitations, this study employed multiple deep learning (DL) networks to extract high-quality HTTP data, establish an association between HTTP data and the yield performance of crops, and select essential time intervals using machine learning (ML). The images of Arabidopsis were taken 12 times under environmentally controlled HTPP over 23 days after sowing (DAS). First, the features from images were extracted using DL network U-Net with SE-ResXt101 encoder and divided into early (15-21 DAS) and late (∼21-23 DAS) pre-flowering developmental stages using the physiological characteristics of the Arabidopsis plant. Second, the late pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based only on a portion of the early pre-flowering stage (17-21 DAS). This was confirmed using an additional biological experiment (P < 0.01). Finally, the projected area (PA) was estimated into fresh weight (FW), and the correlation coefficient between FW and predicted FW was calculated as 0.85. This was the first study that analyzed time-series data to predict the FW of related but different developmental stages and predict the PA. The results of this study were informative and enabled the understanding of the FW of Arabidopsis or yield of leafy plants and total biomass consumed in vertical farming. Moreover, this study highlighted the reduction of time-series data for examining interesting traits and future application of time-series analysis in various HTPPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
在水一方应助jingyu采纳,获得10
1秒前
1秒前
hkunyu完成签到 ,获得积分10
2秒前
18204693903完成签到 ,获得积分10
2秒前
qiute621发布了新的文献求助10
2秒前
Hhhhhhu完成签到,获得积分10
2秒前
2秒前
xiaobai123456发布了新的文献求助10
3秒前
Zymiao完成签到,获得积分10
4秒前
张张Zzz完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
5秒前
晴天完成签到,获得积分10
5秒前
DRHSK完成签到,获得积分20
6秒前
linmo完成签到,获得积分10
7秒前
7秒前
yqliu完成签到,获得积分10
7秒前
7秒前
7秒前
楚hh发布了新的文献求助10
7秒前
8秒前
8秒前
Eggbro给Eggbro的求助进行了留言
8秒前
Sandy11完成签到,获得积分10
8秒前
科研通AI6应助Zymiao采纳,获得10
8秒前
DRHSK发布了新的文献求助10
8秒前
共享精神应助山楂球采纳,获得10
9秒前
xiu发布了新的文献求助10
9秒前
的方法完成签到,获得积分10
9秒前
打打应助YUANBIAO采纳,获得10
9秒前
9秒前
隐形曼青应助ee采纳,获得10
9秒前
9秒前
馒头发布了新的文献求助10
10秒前
wnan_07完成签到,获得积分10
11秒前
11秒前
zzz完成签到,获得积分10
11秒前
11秒前
慕青应助稳重一鸣采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577