清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning-based 3D in vivo dose reconstruction with an electronic portal imaging device for magnetic resonance-linear accelerators: a proof of concept study

磁共振成像 基本事实 核医学 计算机科学 直线粒子加速器 蒙特卡罗方法 卷积神经网络 人工智能 医学 梁(结构) 物理 放射科 数学 光学 统计
作者
Yongbao Li,Fan Xiao,Biaoshui Liu,Mengke Qi,Xingyu Lu,Jiajun Cai,Linghong Zhou,Ting Song
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (23): 235011-235011 被引量:7
标识
DOI:10.1088/1361-6560/ac3b66
摘要

Abstract Objective. To develop a novel deep learning-based 3D in vivo dose reconstruction framework with an electronic portal imaging device (EPID) for magnetic resonance-linear accelerators (MR-LINACs). Approach. The proposed method directly back-projected 2D portal dose into 3D patient coarse dose, which bypassed the complicated patient-to-EPID scatter estimation step used in conventional methods. A pre-trained convolutional neural network (CNN) was then employed to map the coarse dose to the final accurate dose. The electron return effect caused by the magnetic field was captured with the CNN model. Patient dose and portal dose datasets were synchronously generated with Monte Carlo simulation for 96 patients (78 cases for training and validation and 18 cases for testing) treated with fixed-beam intensity-modulated radiotherapy in four different tumor sites, including the brain, nasopharynx, lung, and rectum. Beam angles from the training dataset were further rotated 2–3 times, and doses were recalculated to augment the datasets. Results. The comparison between reconstructed doses and MC ground truth doses showed mean absolute errors <0.88% for all tumor sites. The averaged 3D γ -passing rates (3%, 2 mm) were 97.42%±2.66% (brain), 98.53%±0.95% (nasopharynx), 99.41%±0.46% (lung), and 98.63%±1.01% (rectum). The dose volume histograms and indices also showed good consistency. The average dose reconstruction time, including back projection and CNN dose mapping, was less than 3 s for each individual beam. Significance. The proposed method can be potentially used for accurate and fast 3D dosimetric verification for online adaptive radiotherapy using MR-LINACs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
cjl发布了新的文献求助10
10秒前
28秒前
65neko发布了新的文献求助80
34秒前
39秒前
jlwang完成签到,获得积分10
40秒前
jerry完成签到 ,获得积分10
49秒前
温不胜的破木吉他完成签到,获得积分10
1分钟前
theo完成签到 ,获得积分10
1分钟前
黄花菜完成签到 ,获得积分0
2分钟前
zcbb完成签到,获得积分10
2分钟前
65neko完成签到,获得积分10
2分钟前
跳跃的鹏飞完成签到 ,获得积分10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
清秀的怀蕊完成签到 ,获得积分10
3分钟前
caipei发布了新的文献求助10
3分钟前
SCI的芷蝶完成签到 ,获得积分10
4分钟前
万能图书馆应助caipei采纳,获得10
4分钟前
4分钟前
chichenglin完成签到 ,获得积分10
4分钟前
ww完成签到,获得积分10
4分钟前
5分钟前
lovexa完成签到,获得积分10
5分钟前
忘忧Aquarius完成签到,获得积分10
5分钟前
小西完成签到 ,获得积分10
5分钟前
XHH完成签到 ,获得积分0
5分钟前
天边的云彩完成签到 ,获得积分10
5分钟前
烂漫的蜡烛完成签到 ,获得积分10
5分钟前
5分钟前
大方的笑萍完成签到 ,获得积分10
5分钟前
picapica668发布了新的文献求助30
5分钟前
picapica668完成签到,获得积分10
5分钟前
Sophie完成签到 ,获得积分10
5分钟前
6分钟前
zh完成签到 ,获得积分10
6分钟前
6分钟前
caipei发布了新的文献求助10
6分钟前
传奇3应助程翠丝采纳,获得20
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466837
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067352
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509065
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696913