Did the COVID-19 Pandemic Crisis Affect Housing Prices Evenly in the U.S.?

大都市区 房地产 2019年冠状病毒病(COVID-19) 大流行 分布(数学) 地理 人口经济学 经济地理学 经济增长 经济 社会经济学 医学 数学 数学分析 病理 考古 传染病(医学专业) 疾病 财务
作者
Xinba Li,Chuanrong Zhang
出处
期刊:Sustainability [MDPI AG]
卷期号:13 (21): 12277-12277 被引量:10
标识
DOI:10.3390/su132112277
摘要

While it is well-known that housing prices generally increased in the United States (U.S.) during the COVID-19 pandemic crisis, to the best of our knowledge, there has been no research conducted to understand the spatial patterns and heterogeneity of housing price changes in the U.S. real estate market during the crisis. There has been less attention on the consequences of this pandemic, in terms of the spatial distribution of housing price changes in the U.S. The objective of this study was to explore the spatial patterns and heterogeneous distribution of housing price change rates across different areas of the U.S. real estate market during the COVID-19 pandemic. We calculated the global Moran’s I, Anselin’s local Moran’s I, and Getis-Ord’s Gi∗ statistics of the housing price change rates in 2856 U.S. counties. The following two major findings were obtained: (1) The influence of the COVID-19 pandemic crisis on housing price change varied across space in the U.S. The patterns not only differed from metropolitan areas to rural areas, but also varied from one metropolitan area to another. (2) It seems that COVID-19 made Americans more cautious about buying property in densely populated urban downtowns that had higher levels of virus infection; therefore, it was found that during the COVID-19 pandemic year of 2020–2021, the housing price hot spots were typically located in more affordable suburbs, smaller cities, and areas away from high-cost, high-density urban downtowns. This study may be helpful for understanding the relationship between the COVID-19 pandemic and the real estate market, as well as human behaviors in response to the pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
666999发布了新的文献求助10
1秒前
鳗鱼语风应助文静的立诚采纳,获得10
1秒前
田様应助机灵笑蓝采纳,获得10
1秒前
小蘑菇应助ww采纳,获得10
1秒前
wowser完成签到,获得积分10
2秒前
3秒前
orixero应助八波采纳,获得30
4秒前
奋斗洋葱完成签到 ,获得积分10
4秒前
七慕凉应助song_song采纳,获得10
5秒前
5秒前
mingming完成签到,获得积分20
5秒前
小白狗应助专注的西西采纳,获得100
6秒前
6秒前
搜集达人应助羞涩的荟采纳,获得10
7秒前
caitlin完成签到 ,获得积分10
7秒前
8秒前
果汁橡皮糖完成签到,获得积分10
8秒前
ccc发布了新的文献求助10
9秒前
bbj发布了新的文献求助30
9秒前
脑洞疼应助满意的涵柳采纳,获得10
9秒前
万能图书馆应助dfvjdsk采纳,获得20
9秒前
April完成签到,获得积分20
10秒前
义拉勒特发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
研友_VZG7GZ应助666999采纳,获得10
13秒前
13秒前
852应助龙龍龖龘采纳,获得10
14秒前
大个应助粗心的丸子采纳,获得10
15秒前
chong0919发布了新的文献求助10
16秒前
拾叁发布了新的文献求助10
18秒前
Jeny完成签到,获得积分10
18秒前
新一499完成签到,获得积分10
19秒前
机灵笑蓝发布了新的文献求助10
19秒前
桐桐应助义拉勒特采纳,获得10
19秒前
小鱼儿发布了新的文献求助10
19秒前
天真大神完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302907
求助须知:如何正确求助?哪些是违规求助? 2937218
关于积分的说明 8481113
捐赠科研通 2611147
什么是DOI,文献DOI怎么找? 1425638
科研通“疑难数据库(出版商)”最低求助积分说明 662425
邀请新用户注册赠送积分活动 646861