Did the COVID-19 Pandemic Crisis Affect Housing Prices Evenly in the U.S.?

大都市区 房地产 2019年冠状病毒病(COVID-19) 大流行 分布(数学) 地理 人口经济学 经济地理学 经济增长 经济 社会经济学 医学 数学 数学分析 病理 考古 传染病(医学专业) 疾病 财务
作者
Xinba Li,Chuanrong Zhang
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:13 (21): 12277-12277 被引量:10
标识
DOI:10.3390/su132112277
摘要

While it is well-known that housing prices generally increased in the United States (U.S.) during the COVID-19 pandemic crisis, to the best of our knowledge, there has been no research conducted to understand the spatial patterns and heterogeneity of housing price changes in the U.S. real estate market during the crisis. There has been less attention on the consequences of this pandemic, in terms of the spatial distribution of housing price changes in the U.S. The objective of this study was to explore the spatial patterns and heterogeneous distribution of housing price change rates across different areas of the U.S. real estate market during the COVID-19 pandemic. We calculated the global Moran’s I, Anselin’s local Moran’s I, and Getis-Ord’s Gi∗ statistics of the housing price change rates in 2856 U.S. counties. The following two major findings were obtained: (1) The influence of the COVID-19 pandemic crisis on housing price change varied across space in the U.S. The patterns not only differed from metropolitan areas to rural areas, but also varied from one metropolitan area to another. (2) It seems that COVID-19 made Americans more cautious about buying property in densely populated urban downtowns that had higher levels of virus infection; therefore, it was found that during the COVID-19 pandemic year of 2020–2021, the housing price hot spots were typically located in more affordable suburbs, smaller cities, and areas away from high-cost, high-density urban downtowns. This study may be helpful for understanding the relationship between the COVID-19 pandemic and the real estate market, as well as human behaviors in response to the pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助sabery采纳,获得10
刚刚
量子星尘发布了新的文献求助150
1秒前
2秒前
笨笨千亦完成签到 ,获得积分10
2秒前
善学以致用应助辛勤金连采纳,获得10
2秒前
SciGPT应助笨笨十三采纳,获得10
2秒前
3秒前
4秒前
活泼学生完成签到 ,获得积分10
5秒前
5秒前
崔楠发布了新的文献求助10
6秒前
JamesPei应助Gmhoo_采纳,获得10
6秒前
6秒前
科研通AI6应助找文献呢采纳,获得10
6秒前
7秒前
9秒前
lxg发布了新的文献求助10
9秒前
sabery发布了新的文献求助10
10秒前
10秒前
11秒前
小狮子给小狮子的求助进行了留言
12秒前
13秒前
13秒前
Orange应助快乐尔蝶采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
Xiaoxiao应助科研通管家采纳,获得150
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
盏盏应助科研通管家采纳,获得10
16秒前
nn完成签到,获得积分10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
不安青牛应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得30
16秒前
浮游应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061155
求助须知:如何正确求助?哪些是违规求助? 4285295
关于积分的说明 13353883
捐赠科研通 4103069
什么是DOI,文献DOI怎么找? 2246464
邀请新用户注册赠送积分活动 1252142
关于科研通互助平台的介绍 1182988