Atomistic Mechanism of 4 H - SiC/SiO2 Interface Carrier-Trapping Effects on Breakdown-Voltage Degradation in Power Devices

物理 材料科学 结晶学 原子物理学 化学
作者
Peng Dong,Pei Li,Shuai Zhang,Haoshu Tan,Zechen Hu,Kun Zhou,Zhiqiang Li,Peng Dong,Juntao Li,Bing Huang
出处
期刊:Physical review applied [American Physical Society]
卷期号:15 (3) 被引量:9
标识
DOI:10.1103/physrevapplied.15.034007
摘要

The $\mathrm{Si}\mathrm{C}/{\mathrm{Si}\mathrm{O}}_{2}$ interface in the termination area is a crucial component in limiting high-temperature reverse-bias (HTRB) reliability for $\mathrm{Si}\mathrm{C}$-based high-voltage devices. However, the atomic structure and carrier-trapping behavior of the $\mathrm{Si}\mathrm{C}/{\mathrm{Si}\mathrm{O}}_{2}$ interface defects therein and the underlying physical mechanisms of breakdown-voltage (${V}_{\mathrm{BD}}$) variation are still largely unclear. Here, the $\mathrm{Si}\mathrm{C}/{\mathrm{Si}\mathrm{O}}_{2}$ interface defects of 4H-$\mathrm{Si}\mathrm{C}$ gate turn-off (GTO) thyristors before and after HTRB stress are investigated by transient capacitance measurements and density-functional-theory (DFT) calculations. It is found that the bias stress at 4.4 kV enlarges the interface state density at ${E}_{C}\ensuremath{-}0.60$ eV to ${E}_{C}\ensuremath{-}1.33$ eV by electron capturing. As a result, the negative interface charge is generated. As high-resolution transmission electron microscopy reveals the presence of excess carbon near the $\mathrm{Si}\mathrm{C}$ surface, DFT calculations are focused on carbon-related interface defects to clarify the atomic and electronic structures of the $\mathrm{Si}\mathrm{C}/{\mathrm{Si}\mathrm{O}}_{2}$ interface trap and assign them to negatively charged excess split-interstitial carbon at the interface. Furthermore, technical computer-aided-design simulation further proves that the negatively charged $\mathrm{Si}\mathrm{C}/{\mathrm{Si}\mathrm{O}}_{2}$ interface defect is the main cause for the observed ${V}_{\mathrm{BD}}$ degradation after the HTRB test, which leads to a strong electric field crowding effect. These results not only provide deep physical insights underlying ${V}_{\mathrm{BD}}$ degradation in HTRB-stressed high-voltage devices, but are also of significant importance in the optimizations of device structure and oxidation technology for $\mathrm{Si}\mathrm{C}/{\mathrm{Si}\mathrm{O}}_{2}$ interfaces in high-voltage $\mathrm{Si}\mathrm{C}$ devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助秦磊采纳,获得10
1秒前
王世缘发布了新的文献求助10
1秒前
啥也不会发布了新的文献求助10
1秒前
1秒前
xxxxx完成签到,获得积分20
2秒前
善良的剑通完成签到 ,获得积分10
2秒前
7777135发布了新的文献求助10
2秒前
2秒前
2秒前
lss完成签到,获得积分10
3秒前
继往开来应助将将采纳,获得10
3秒前
李健的小迷弟应助科研123采纳,获得10
3秒前
92年的矿泉水完成签到,获得积分10
4秒前
4秒前
4秒前
星辰大海应助蘇尼Ai采纳,获得10
4秒前
英姑应助高安之采纳,获得10
5秒前
Bertie完成签到,获得积分10
5秒前
6秒前
squeak完成签到,获得积分10
6秒前
安安关注了科研通微信公众号
7秒前
苗广山发布了新的文献求助10
7秒前
tuetue应助mashibeo采纳,获得10
8秒前
坚定的路人应助王世缘采纳,获得10
8秒前
小白是大美女完成签到,获得积分20
8秒前
刻苦颤完成签到,获得积分10
8秒前
fdaqin发布了新的文献求助10
8秒前
安静的靖发布了新的文献求助30
9秒前
无花果应助科研dog采纳,获得10
9秒前
香蕉觅云应助weiwei采纳,获得10
9秒前
越曰发布了新的文献求助30
9秒前
嘟噜完成签到 ,获得积分10
10秒前
ky幻影发布了新的文献求助10
11秒前
搜集达人应助正直涔雨采纳,获得10
11秒前
11秒前
Yifan完成签到,获得积分20
12秒前
Lucas应助chen采纳,获得10
13秒前
哈希拉玛完成签到,获得积分10
13秒前
李健应助不安太阳采纳,获得10
14秒前
老仙翁完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198