Development and validation of a model for the early prediction of the RRT requirement in patients with rhabdomyolysis

医学 列线图 逻辑回归 Lasso(编程语言) 数据库 接收机工作特性 肾脏替代疗法 回顾性队列研究 病历 一致性 内科学 计算机科学 万维网
作者
Chao Liu,Qian Yuan,Zhi Mao,Pan Hu,Rilige Wu,Xiaoli Liu,Quan Hong,Kun Chi,Xiaodong Geng,Xuefeng Sun
出处
期刊:American Journal of Emergency Medicine [Elsevier]
卷期号:46: 38-44 被引量:3
标识
DOI:10.1016/j.ajem.2021.03.006
摘要

Rhabdomyolysis (RM) is a complex set of clinical syndromes involving the rapid dissolution of skeletal muscles. The early detection of patients who need renal replacement therapy (RRT) is very important and may aid in delivering proper care and optimizing the use of limited resources. Retrospective analyses of the following three databases were performed: the eICU Collaborative Research Database (eICU-CRD), the Medical Information Mart for Intensive Care III (MIMIC-III) database and electronic medical records from the First Medical Centre of the Chinese People's Liberation Army General Hospital (PLAGH). The data from the eICU-CRD and MIMIC-III datasets were merged to form the derivation cohort. The data collected from the Chinese PLAGH were used for external validation. The factors predictive of the need for RRT were selected using a LASSO regression analysis. A logistic regression was selected as the algorithm. The model was built in Python using the ML library scikit-learn. The accuracy of the model was measured by the area under the receiver operating characteristic curve (AUC). R software was used for the LASSO regression analysis, nomogram, concordance index, calibration, and decision and clinical impact curves. In total, 1259 patients with RM (614 patients from eICU-CRD, 324 patients from the MIMIC-III database and 321 patients from the Chinese PLAGH) were eligible for this analysis. The rate of RRT was 15.0% (92/614) in the eICU-CRD database, 17.6% (57/324) in the MIMIC-III database and 5.6% in the Chinese PLAGH (18/321). After the LASSO regression selection, eight variables were included in the RRT prediction model. The AUC of the model in the training dataset was 0.818 (95% CI 0.78–0.87), the AUC in the test dataset was 0.794 (95% CI 0.72–0.86), and the AUC in the Chinese PLAGH dataset (external validation dataset) was 0.820 (95% CI 0.70–0.86). We developed and validated a model for the early prediction of the RRT requirement among patients with RM based on 8 variables commonly measured during the first 24 h after admission. Predicting the need for RRT could help ensure appropriate treatment and facilitate the optimization of the use of medical resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
zzz完成签到,获得积分10
1秒前
我是老大应助jjq采纳,获得10
5秒前
我是老大应助左白易采纳,获得10
9秒前
脑洞疼应助fox采纳,获得10
11秒前
科研小蔡发布了新的文献求助10
15秒前
19秒前
思源应助wait采纳,获得10
19秒前
范慧晨完成签到,获得积分10
19秒前
魏头头完成签到 ,获得积分10
19秒前
欢喜的鹏涛完成签到,获得积分10
19秒前
20秒前
沅沅完成签到 ,获得积分10
22秒前
张来发布了新的文献求助10
24秒前
fox发布了新的文献求助10
24秒前
25秒前
28秒前
张振宇发布了新的文献求助10
29秒前
bkagyin应助科研小蔡采纳,获得10
29秒前
黑米粥发布了新的文献求助10
32秒前
33秒前
Lucky完成签到 ,获得积分10
34秒前
34秒前
37秒前
鲤黎黎发布了新的文献求助10
40秒前
绵绵球发布了新的文献求助10
41秒前
41秒前
42秒前
42秒前
45秒前
黑米粥发布了新的文献求助10
45秒前
左白易发布了新的文献求助10
46秒前
小情绪发布了新的文献求助10
46秒前
47秒前
我是老大应助he采纳,获得10
47秒前
Timber完成签到,获得积分10
51秒前
53秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560463
求助须知:如何正确求助?哪些是违规求助? 4645717
关于积分的说明 14675923
捐赠科研通 4586840
什么是DOI,文献DOI怎么找? 2516564
邀请新用户注册赠送积分活动 1490169
关于科研通互助平台的介绍 1461037