Development and validation of a model for the early prediction of the RRT requirement in patients with rhabdomyolysis

医学 列线图 逻辑回归 Lasso(编程语言) 数据库 接收机工作特性 肾脏替代疗法 回顾性队列研究 病历 一致性 内科学 计算机科学 万维网
作者
Chao Liu,Qian Yuan,Zhi Mao,Pan Hu,Rilige Wu,Xiaoli Liu,Quan Hong,Kun Chi,Xiaodong Geng,Xuefeng Sun
出处
期刊:American Journal of Emergency Medicine [Elsevier]
卷期号:46: 38-44 被引量:3
标识
DOI:10.1016/j.ajem.2021.03.006
摘要

Rhabdomyolysis (RM) is a complex set of clinical syndromes involving the rapid dissolution of skeletal muscles. The early detection of patients who need renal replacement therapy (RRT) is very important and may aid in delivering proper care and optimizing the use of limited resources. Retrospective analyses of the following three databases were performed: the eICU Collaborative Research Database (eICU-CRD), the Medical Information Mart for Intensive Care III (MIMIC-III) database and electronic medical records from the First Medical Centre of the Chinese People's Liberation Army General Hospital (PLAGH). The data from the eICU-CRD and MIMIC-III datasets were merged to form the derivation cohort. The data collected from the Chinese PLAGH were used for external validation. The factors predictive of the need for RRT were selected using a LASSO regression analysis. A logistic regression was selected as the algorithm. The model was built in Python using the ML library scikit-learn. The accuracy of the model was measured by the area under the receiver operating characteristic curve (AUC). R software was used for the LASSO regression analysis, nomogram, concordance index, calibration, and decision and clinical impact curves. In total, 1259 patients with RM (614 patients from eICU-CRD, 324 patients from the MIMIC-III database and 321 patients from the Chinese PLAGH) were eligible for this analysis. The rate of RRT was 15.0% (92/614) in the eICU-CRD database, 17.6% (57/324) in the MIMIC-III database and 5.6% in the Chinese PLAGH (18/321). After the LASSO regression selection, eight variables were included in the RRT prediction model. The AUC of the model in the training dataset was 0.818 (95% CI 0.78–0.87), the AUC in the test dataset was 0.794 (95% CI 0.72–0.86), and the AUC in the Chinese PLAGH dataset (external validation dataset) was 0.820 (95% CI 0.70–0.86). We developed and validated a model for the early prediction of the RRT requirement among patients with RM based on 8 variables commonly measured during the first 24 h after admission. Predicting the need for RRT could help ensure appropriate treatment and facilitate the optimization of the use of medical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸鱼完成签到,获得积分20
刚刚
贪玩果汁发布了新的文献求助10
刚刚
Aaa_12012完成签到,获得积分10
1秒前
烟花应助mmmmmagic采纳,获得10
1秒前
2秒前
红汤加煎蛋完成签到,获得积分10
2秒前
英俊的铭应助博修采纳,获得10
2秒前
鲸鱼发布了新的文献求助10
3秒前
研友_gnvY5L完成签到 ,获得积分10
3秒前
6秒前
呆萌千凝完成签到,获得积分20
7秒前
忧虑的代容完成签到 ,获得积分10
8秒前
景茶茶完成签到 ,获得积分10
8秒前
mouxq发布了新的文献求助10
9秒前
nater3ver完成签到,获得积分10
10秒前
Anan应助lily采纳,获得30
10秒前
烟雾里完成签到 ,获得积分10
10秒前
Luis完成签到,获得积分10
11秒前
11秒前
12秒前
hql_sdu完成签到,获得积分10
13秒前
淋湿巴黎发布了新的文献求助10
13秒前
苹果萧完成签到 ,获得积分10
14秒前
keaijun完成签到 ,获得积分10
14秒前
桐桐应助hh77采纳,获得10
15秒前
蔡6705发布了新的文献求助10
16秒前
16秒前
nater2ver完成签到,获得积分10
19秒前
21秒前
明亮飞双完成签到,获得积分10
21秒前
22秒前
CC完成签到,获得积分10
23秒前
Archer完成签到,获得积分10
23秒前
脑洞疼应助蔡6705采纳,获得10
23秒前
充电宝应助淋湿巴黎采纳,获得10
23秒前
nater1ver完成签到,获得积分10
23秒前
Zhangaaaa发布了新的文献求助30
24秒前
灵巧白安完成签到,获得积分10
24秒前
坚定青柏完成签到,获得积分10
25秒前
26秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339302
求助须知:如何正确求助?哪些是违规求助? 2967175
关于积分的说明 8628803
捐赠科研通 2646654
什么是DOI,文献DOI怎么找? 1449308
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180