Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Intra-peritumoral Textural Transition Analysis based on Dynamic Contrast-enhanced Magnetic Resonance Imaging

乳腺癌 医学 磁共振成像 动态对比度 无线电技术 淋巴结 放射科 支持向量机 淋巴结转移 特征(语言学) 特征选择 转移 癌症 计算机科学 人工智能 病理 内科学 哲学 语言学
作者
Chenao Zhan,Yiqi Hu,Xinrong Wang,Huan Liu,Liming Xia,Tao Ai
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S107-S115 被引量:18
标识
DOI:10.1016/j.acra.2021.02.008
摘要

Intra-peritumoural textural transition (Ipris) is a new radiomics method, which includes a series of quantitative measurements of the image features that represent the differences between the inside and outside of the tumour. This study aimed to explore the feasibility of Ipris analysis for the preoperative prediction of axillary lymph node (ALN) status in patients with breast cancer based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).This study was approved by the Institutional Review Board (IRB) of our hospital. One hundred sixty-six patients with clinicopathologically confirmed invasive breast cancer and ALN status were enrolled. All patients underwent preoperative breast DCE-MRI examinations. The primary breast lesion was manually segmented using the ITK-SNAP software for each patient. Two sets of image features were extracted, including Ipris features and conventional intratumoural features. Feature selection was conducted using Spearman correlation analysis and support vector machine with recursive feature elimination (SVM-RFE). Next, three models were established in training dataset: Model 1 was established by Ipris features; Model 2 was established by intratumoural features; Model 3 was established by combining Ipris features and intratumoural features. The performances of the three models were evaluated for the prediction of ALN status in testing datasets.Model 1 with four Ipris features achieved an AUC of 0.816 (95% CI, 0.733-0.883) and 0.829 (95% CI, 0.695-0.922) in the training and testing datasets, respectively. Model 2 with six intratumoural features achieved an AUC of 0.801 (95% CI, 0.716-0.870) and 0.824 (95% CI, 0.689-0.918) in the training and testing datasets, respectively. By incorporating the Ipris and intratumoural features, the AUC of Model 3 increased to 0.968 (95% CI, 0.916-0.992) and 0.855 (95% CI, 0.724-0.939) in the training and testing datasets, respectively.Ipris features based on DCE-MRI can be used to predict ALN status in patients with breast cancer. The model combining intratumoural and Ipris features achieved higher prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
海岸线完成签到,获得积分10
刚刚
1秒前
007完成签到,获得积分10
1秒前
NIHAO发布了新的文献求助20
1秒前
果蝇之母完成签到 ,获得积分10
1秒前
CharlieYue发布了新的文献求助10
1秒前
钦尧完成签到,获得积分10
2秒前
科研通AI6应助LIN采纳,获得10
2秒前
Orange应助oyjq采纳,获得10
2秒前
Mxj0607发布了新的文献求助10
2秒前
曾经二娘发布了新的文献求助10
2秒前
2秒前
懵的关注了科研通微信公众号
2秒前
3秒前
思源应助weiwenzuo采纳,获得10
3秒前
shi hui应助Xiaoping采纳,获得10
3秒前
王平安完成签到 ,获得积分10
3秒前
苟剩发布了新的文献求助10
3秒前
zy3637完成签到,获得积分10
5秒前
5秒前
陈末应助午夜煎饼采纳,获得10
5秒前
liyk完成签到,获得积分10
6秒前
Hielo完成签到 ,获得积分10
6秒前
杨杨onng发布了新的文献求助30
7秒前
天天快乐应助伶俐的若剑采纳,获得10
7秒前
zjzjzjzjzj完成签到 ,获得积分10
7秒前
曾经二娘完成签到,获得积分10
7秒前
Japrin发布了新的文献求助10
7秒前
8秒前
JacobDu666完成签到,获得积分10
8秒前
阔达的水壶完成签到 ,获得积分10
8秒前
8秒前
思源应助T拐拐采纳,获得10
8秒前
东郭一斩发布了新的文献求助20
8秒前
蜂蜜柚子茶iii完成签到,获得积分10
9秒前
高兴的玉米完成签到 ,获得积分10
9秒前
9秒前
Jasper应助porcelain采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402598
求助须知:如何正确求助?哪些是违规求助? 4521214
关于积分的说明 14084549
捐赠科研通 4435204
什么是DOI,文献DOI怎么找? 2434608
邀请新用户注册赠送积分活动 1426723
关于科研通互助平台的介绍 1405516