清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Intra-peritumoral Textural Transition Analysis based on Dynamic Contrast-enhanced Magnetic Resonance Imaging

乳腺癌 医学 磁共振成像 动态对比度 无线电技术 淋巴结 放射科 支持向量机 淋巴结转移 特征(语言学) 特征选择 转移 癌症 计算机科学 人工智能 病理 内科学 语言学 哲学
作者
Chenao Zhan,Yiqi Hu,Xinrong Wang,Huan Liu,Liming Xia,Tao Ai
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29: S107-S115 被引量:18
标识
DOI:10.1016/j.acra.2021.02.008
摘要

Intra-peritumoural textural transition (Ipris) is a new radiomics method, which includes a series of quantitative measurements of the image features that represent the differences between the inside and outside of the tumour. This study aimed to explore the feasibility of Ipris analysis for the preoperative prediction of axillary lymph node (ALN) status in patients with breast cancer based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).This study was approved by the Institutional Review Board (IRB) of our hospital. One hundred sixty-six patients with clinicopathologically confirmed invasive breast cancer and ALN status were enrolled. All patients underwent preoperative breast DCE-MRI examinations. The primary breast lesion was manually segmented using the ITK-SNAP software for each patient. Two sets of image features were extracted, including Ipris features and conventional intratumoural features. Feature selection was conducted using Spearman correlation analysis and support vector machine with recursive feature elimination (SVM-RFE). Next, three models were established in training dataset: Model 1 was established by Ipris features; Model 2 was established by intratumoural features; Model 3 was established by combining Ipris features and intratumoural features. The performances of the three models were evaluated for the prediction of ALN status in testing datasets.Model 1 with four Ipris features achieved an AUC of 0.816 (95% CI, 0.733-0.883) and 0.829 (95% CI, 0.695-0.922) in the training and testing datasets, respectively. Model 2 with six intratumoural features achieved an AUC of 0.801 (95% CI, 0.716-0.870) and 0.824 (95% CI, 0.689-0.918) in the training and testing datasets, respectively. By incorporating the Ipris and intratumoural features, the AUC of Model 3 increased to 0.968 (95% CI, 0.916-0.992) and 0.855 (95% CI, 0.724-0.939) in the training and testing datasets, respectively.Ipris features based on DCE-MRI can be used to predict ALN status in patients with breast cancer. The model combining intratumoural and Ipris features achieved higher prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dasein完成签到 ,获得积分10
10秒前
souther完成签到,获得积分0
18秒前
iris发布了新的文献求助30
21秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
21秒前
善学以致用应助Apr9810h采纳,获得10
55秒前
57秒前
1分钟前
脑洞疼应助iris采纳,获得10
1分钟前
Apr9810h发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
jiacheng完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
wjw123发布了新的文献求助10
2分钟前
大方的含桃完成签到,获得积分10
2分钟前
2分钟前
QCB完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ukz37752发布了新的文献求助10
2分钟前
102发布了新的文献求助10
2分钟前
WU发布了新的文献求助10
2分钟前
102完成签到,获得积分10
3分钟前
3分钟前
4分钟前
闫伊森完成签到,获得积分10
4分钟前
oo发布了新的文献求助10
4分钟前
wanci应助wang采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
6分钟前
supermaltose发布了新的文献求助10
6分钟前
6分钟前
snowskating发布了新的文献求助10
6分钟前
supermaltose完成签到,获得积分10
6分钟前
ys完成签到 ,获得积分10
7分钟前
Hello应助一这那西采纳,获得50
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926763
求助须知:如何正确求助?哪些是违规求助? 4196356
关于积分的说明 13032482
捐赠科研通 3968676
什么是DOI,文献DOI怎么找? 2175096
邀请新用户注册赠送积分活动 1192250
关于科研通互助平台的介绍 1102649