Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Intra-peritumoral Textural Transition Analysis based on Dynamic Contrast-enhanced Magnetic Resonance Imaging

乳腺癌 医学 磁共振成像 动态对比度 无线电技术 淋巴结 放射科 支持向量机 淋巴结转移 特征(语言学) 特征选择 转移 癌症 计算机科学 人工智能 病理 内科学 哲学 语言学
作者
Chenao Zhan,Yiqi Hu,Xinrong Wang,Huan Liu,Liming Xia,Tao Ai
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29: S107-S115 被引量:18
标识
DOI:10.1016/j.acra.2021.02.008
摘要

Intra-peritumoural textural transition (Ipris) is a new radiomics method, which includes a series of quantitative measurements of the image features that represent the differences between the inside and outside of the tumour. This study aimed to explore the feasibility of Ipris analysis for the preoperative prediction of axillary lymph node (ALN) status in patients with breast cancer based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).This study was approved by the Institutional Review Board (IRB) of our hospital. One hundred sixty-six patients with clinicopathologically confirmed invasive breast cancer and ALN status were enrolled. All patients underwent preoperative breast DCE-MRI examinations. The primary breast lesion was manually segmented using the ITK-SNAP software for each patient. Two sets of image features were extracted, including Ipris features and conventional intratumoural features. Feature selection was conducted using Spearman correlation analysis and support vector machine with recursive feature elimination (SVM-RFE). Next, three models were established in training dataset: Model 1 was established by Ipris features; Model 2 was established by intratumoural features; Model 3 was established by combining Ipris features and intratumoural features. The performances of the three models were evaluated for the prediction of ALN status in testing datasets.Model 1 with four Ipris features achieved an AUC of 0.816 (95% CI, 0.733-0.883) and 0.829 (95% CI, 0.695-0.922) in the training and testing datasets, respectively. Model 2 with six intratumoural features achieved an AUC of 0.801 (95% CI, 0.716-0.870) and 0.824 (95% CI, 0.689-0.918) in the training and testing datasets, respectively. By incorporating the Ipris and intratumoural features, the AUC of Model 3 increased to 0.968 (95% CI, 0.916-0.992) and 0.855 (95% CI, 0.724-0.939) in the training and testing datasets, respectively.Ipris features based on DCE-MRI can be used to predict ALN status in patients with breast cancer. The model combining intratumoural and Ipris features achieved higher prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Who1990完成签到,获得积分10
刚刚
wanci应助搞怪元彤采纳,获得10
1秒前
犹豫代曼完成签到,获得积分10
2秒前
云烟完成签到 ,获得积分10
2秒前
鱼羊完成签到,获得积分10
3秒前
崖涯完成签到 ,获得积分10
3秒前
三愿完成签到 ,获得积分10
4秒前
小甜完成签到,获得积分10
6秒前
热心的流沙完成签到,获得积分10
6秒前
一颗小洋葱完成签到 ,获得积分10
7秒前
Anna完成签到 ,获得积分10
7秒前
十年完成签到 ,获得积分10
7秒前
calmxp完成签到,获得积分10
8秒前
Loooong完成签到,获得积分0
8秒前
wd完成签到,获得积分10
8秒前
长安完成签到,获得积分10
8秒前
alho完成签到 ,获得积分10
9秒前
史迪仔完成签到,获得积分10
10秒前
DanaLin完成签到,获得积分10
10秒前
11完成签到 ,获得积分20
10秒前
科研小白完成签到,获得积分10
10秒前
故意的傲柏完成签到 ,获得积分10
10秒前
橘子海完成签到,获得积分10
11秒前
momo完成签到,获得积分10
13秒前
CCC完成签到,获得积分10
13秒前
搞怪元彤完成签到,获得积分10
15秒前
wjzhan完成签到,获得积分10
16秒前
拼搏绿柳完成签到,获得积分10
17秒前
鑫鑫和东东呀完成签到,获得积分10
17秒前
WXY完成签到 ,获得积分10
18秒前
5AGAME完成签到,获得积分10
19秒前
小小完成签到,获得积分10
20秒前
鲤鱼青雪完成签到,获得积分10
20秒前
ncuwzq完成签到,获得积分10
22秒前
英勇含烟完成签到,获得积分10
22秒前
qh0305完成签到,获得积分10
22秒前
薛乎虚完成签到 ,获得积分10
22秒前
英勇哈密瓜数据线完成签到,获得积分10
23秒前
啊哈完成签到,获得积分10
23秒前
wang完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256478
求助须知:如何正确求助?哪些是违规求助? 4418730
关于积分的说明 13753082
捐赠科研通 4291913
什么是DOI,文献DOI怎么找? 2355182
邀请新用户注册赠送积分活动 1351622
关于科研通互助平台的介绍 1312330