亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Intra-peritumoral Textural Transition Analysis based on Dynamic Contrast-enhanced Magnetic Resonance Imaging

乳腺癌 医学 磁共振成像 动态对比度 无线电技术 淋巴结 放射科 支持向量机 淋巴结转移 特征(语言学) 特征选择 转移 癌症 计算机科学 人工智能 病理 内科学 哲学 语言学
作者
Chenao Zhan,Yiqi Hu,Xinrong Wang,Huan Liu,Liming Xia,Tao Ai
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S107-S115 被引量:15
标识
DOI:10.1016/j.acra.2021.02.008
摘要

Intra-peritumoural textural transition (Ipris) is a new radiomics method, which includes a series of quantitative measurements of the image features that represent the differences between the inside and outside of the tumour. This study aimed to explore the feasibility of Ipris analysis for the preoperative prediction of axillary lymph node (ALN) status in patients with breast cancer based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).This study was approved by the Institutional Review Board (IRB) of our hospital. One hundred sixty-six patients with clinicopathologically confirmed invasive breast cancer and ALN status were enrolled. All patients underwent preoperative breast DCE-MRI examinations. The primary breast lesion was manually segmented using the ITK-SNAP software for each patient. Two sets of image features were extracted, including Ipris features and conventional intratumoural features. Feature selection was conducted using Spearman correlation analysis and support vector machine with recursive feature elimination (SVM-RFE). Next, three models were established in training dataset: Model 1 was established by Ipris features; Model 2 was established by intratumoural features; Model 3 was established by combining Ipris features and intratumoural features. The performances of the three models were evaluated for the prediction of ALN status in testing datasets.Model 1 with four Ipris features achieved an AUC of 0.816 (95% CI, 0.733-0.883) and 0.829 (95% CI, 0.695-0.922) in the training and testing datasets, respectively. Model 2 with six intratumoural features achieved an AUC of 0.801 (95% CI, 0.716-0.870) and 0.824 (95% CI, 0.689-0.918) in the training and testing datasets, respectively. By incorporating the Ipris and intratumoural features, the AUC of Model 3 increased to 0.968 (95% CI, 0.916-0.992) and 0.855 (95% CI, 0.724-0.939) in the training and testing datasets, respectively.Ipris features based on DCE-MRI can be used to predict ALN status in patients with breast cancer. The model combining intratumoural and Ipris features achieved higher prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱慕卉发布了新的文献求助10
27秒前
可爱慕卉完成签到,获得积分10
37秒前
39秒前
mashibeo发布了新的文献求助10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
完美世界应助ping采纳,获得20
1分钟前
mashibeo完成签到,获得积分10
1分钟前
1分钟前
微笑高山完成签到 ,获得积分10
1分钟前
Cathy完成签到,获得积分10
1分钟前
Raunio完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ping发布了新的文献求助20
2分钟前
2分钟前
ping完成签到,获得积分0
3分钟前
MchemG应助氨甲酰磷酸采纳,获得20
3分钟前
3分钟前
卓初露完成签到 ,获得积分10
3分钟前
4分钟前
聂裕铭完成签到 ,获得积分10
4分钟前
5分钟前
完美世界应助科研通管家采纳,获得10
5分钟前
5分钟前
帅狗发布了新的文献求助10
5分钟前
李健的小迷弟应助帅狗采纳,获得10
5分钟前
小鹿发布了新的文献求助10
6分钟前
6分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
7分钟前
小脚丫完成签到 ,获得积分10
8分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
星辰大海应助科研通管家采纳,获得10
9分钟前
张同学快去做实验呀完成签到,获得积分10
9分钟前
9分钟前
10分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015704
关于积分的说明 8871668
捐赠科研通 2703410
什么是DOI,文献DOI怎么找? 1482274
科研通“疑难数据库(出版商)”最低求助积分说明 685175
邀请新用户注册赠送积分活动 679951