计算机科学
可穿戴计算机
仿生学
机械工程
人工智能
工程类
嵌入式系统
作者
Tiffany Cheng,Marc Thielen,Simon Poppinga,Yasaman Tahouni,Dylan Wood,Thorsten Steinberg,Achim Menges,Thomas Speck
标识
DOI:10.1002/advs.202100411
摘要
This paper presents a material programming approach for designing 4D-printed self-shaping material systems based on biological role models. Plants have inspired numerous adaptive systems that move without using any operating energy; however, these systems are typically designed and fabricated in the form of simplified bilayers. This work introduces computational design methods for 4D-printing bio-inspired behaviors with compounded mechanisms. To emulate the anisotropic arrangement of motile plant structures, material systems are tailored at the mesoscale using extrusion-based 3D-printing. The methodology is demonstrated by transferring the principle of force generation by a twining plant (Dioscorea bulbifera) to the application of a self-tightening splint. Through the tensioning of its stem helix, D. bulbifera exhibits a squeezing force on its support to provide stability against gravity. The functional strategies of D. bulbifera are abstracted and translated to customized 4D-printed material systems. The squeezing forces of these bio-inspired motion mechanisms are then evaluated. Finally, the function of self-tightening is prototyped in a wrist-forearm splint-a common orthotic device for alignment. The presented approach enables the transfer of novel and expanded biomimetic design strategies to 4D-printed motion mechanisms, further opening the design space to new types of adaptive creations for wearable assistive technologies and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI