材料科学
海绵骨针
纳米颗粒
纳米
化学工程
纳米尺度
锌
千分尺
聚合物
纳米材料
聚乳酸
纳米技术
复合材料
光学
生物
冶金
工程类
物理
解剖
作者
Bum Chul Park,Sang Won Byun,Youngjun Ju,Dae Beom Lee,Ji Beom Shin,Kyung‐Min Yeon,Yu Jin Kim,Prashant Sharma,Nam Hyuk Cho,Jungbae Kim,Young Keun Kim
标识
DOI:10.1002/adfm.202100844
摘要
Abstract The artificial construction of nature‐mimic inorganic–organic heterostructures is an emerging technological interest for protective surface applications. Mimicking the spikiness of sea urchin spicules for their protective function, here, the synthesis of zinc oxide (ZnO) nanometer‐scale spicules grown from micrometer‐scale polylactic acid (PLA) beads and fibers as super‐hydrophilic and bactericidal surfaces is reported. The thermodynamic mechanism behind the interfacial assembly of pre‐entrapped ZnO nanoparticles right at the PLA–water interfaces above the glass transition temperature of PLA, allowing for the follow‐up growth of nano‐spicules on the PLA templates is uncovered. This sea urchin‐like topography of ZnO nano‐spicules induces super‐hydrophilicity while generating reactive oxygen species as well as allowing the stabbing action of nano‐spicules. All of the above help enhance the bactericidal activity against both gram‐positive and gram‐negative bacteria in an unprecedentedly effective way. The findings conceptualize a new strategy to spontaneously assemble nanoparticles at the polymer–liquid interfaces, enabling various heterostructures with topography‐induced functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI