Towards low carbon cities: A machine learning method for predicting urban blocks carbon emissions (UBCE) based on built environment factors (BEF) in Changxing City, China

城市热岛 碳纤维 人工神经网络 中国 环境科学 城市规划 环境工程 气象学 地理 数学 计算机科学 土木工程 工程类 算法 机器学习 复合数 考古
作者
Xiaoping Zhang,Fengying Yan,Hongjiang Liu,Zhi Qiao
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:69: 102875-102875 被引量:52
标识
DOI:10.1016/j.scs.2021.102875
摘要

Predicting urban blocks carbon emissions (UBCE) accurately based on built environment factors (BEF) is an effective way to reduce UBCE and alleviate urban heat islands (UHI) from the perspective of urban planning. At an urban level, this study collected various sources of data and proposed a machine learning method (Back Propagation Neural Network - BPNN) to predict different functions of UBCE by BEF in Changxing, a representative small city in China. The study found that UBCE can be significantly affected by BEF such as density, function, and morphology. The BPNN has a good prediction performance on different functions of UBCE, and the mean absolute percentage error (MAPE) is stable within 10 %–20 %. The prediction results showed that the average value of different functions of UBCE presented an obvious variation. The carbon emission map showed that the high UBCE are mainly clustered in the middle-east and south of the central city of Changxing. By comparison with other studies, the accuracy of this method was proved. This method could be applied to predict carbon emissions of the urban planning scheme. Optimizing the BEF of urban blocks can play key roles in the reduction of carbon emissions and then alleviation of the UHI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dove完成签到,获得积分10
2秒前
大模型应助陈洋采纳,获得10
2秒前
2秒前
cencen发布了新的文献求助10
4秒前
5秒前
dove发布了新的文献求助10
8秒前
田様应助wwz采纳,获得20
9秒前
10秒前
紫麒麟完成签到,获得积分10
11秒前
11秒前
溜溜莓完成签到,获得积分10
13秒前
14秒前
世界尽头完成签到,获得积分10
14秒前
16秒前
华仔应助Summer采纳,获得10
16秒前
orixero应助神勇秋白采纳,获得10
16秒前
莉莉发布了新的文献求助10
17秒前
18秒前
开朗筮发布了新的文献求助10
19秒前
海绵宝宝完成签到,获得积分10
24秒前
开朗筮完成签到,获得积分10
26秒前
26秒前
26秒前
1111茗完成签到 ,获得积分20
29秒前
30秒前
锤子简历关注了科研通微信公众号
30秒前
iuu完成签到,获得积分10
30秒前
空写乐发布了新的文献求助10
30秒前
Vivian发布了新的文献求助10
31秒前
33秒前
37秒前
37秒前
40秒前
惊执虫儿发布了新的文献求助10
41秒前
灵珠学医完成签到 ,获得积分10
41秒前
锤子简历发布了新的文献求助10
43秒前
43秒前
44秒前
45秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206874
求助须知:如何正确求助?哪些是违规求助? 4385090
关于积分的说明 13655640
捐赠科研通 4243471
什么是DOI,文献DOI怎么找? 2328142
邀请新用户注册赠送积分活动 1325869
关于科研通互助平台的介绍 1277979