Robust Self-Ensembling Network for Hyperspectral Image Classification

计算机科学 人工智能 高光谱成像 稳健性(进化) 水准点(测量) 机器学习 模式识别(心理学) Boosting(机器学习) 数据挖掘 编码(集合论) 任务(项目管理) 经济 集合(抽象数据类型) 化学 大地测量学 管理 程序设计语言 地理 基因 生物化学
作者
Yonghao Xu,Bo Du,Liangpei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3780-3793 被引量:32
标识
DOI:10.1109/tnnls.2022.3198142
摘要

Recent research has shown the great potential of deep learning algorithms in the hyperspectral image (HSI) classification task.Nevertheless, training these models usually requires a large amount of labeled data.Since the collection of pixel-level annotations for HSI is laborious and time-consuming, developing algorithms that can yield good performance in the small sample size situation is of great significance.In this study, we propose a robust self-ensembling network (RSEN) to address this problem.The proposed RSEN consists of two subnetworks including a base network and an ensemble network.With the constraint of both the supervised loss from the labeled data and the unsupervised loss from the unlabeled data, the base network and the ensemble network can learn from each other, achieving the self-ensembling mechanism.To the best of our knowledge, the proposed method is the first attempt to introduce the self-ensembling technique into the HSI classification task, which provides a different view on how to utilize the unlabeled data in HSI to assist the network training.We further propose a novel consistency filter to increase the robustness of self-ensembling learning.Extensive experiments on three benchmark HSI datasets demonstrate that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.Code is available online (https://github.com/YonghaoXu/RSEN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李爱国应助晨曦采纳,获得10
2秒前
0128lun发布了新的文献求助10
2秒前
phd发布了新的文献求助10
3秒前
君无名完成签到 ,获得积分10
3秒前
经年发布了新的文献求助10
3秒前
QXR完成签到,获得积分10
4秒前
豆dou完成签到,获得积分10
4秒前
Dddd发布了新的文献求助10
4秒前
HCl完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
Hollen完成签到 ,获得积分10
8秒前
慕青应助学术蠕虫采纳,获得10
9秒前
9秒前
叶子发布了新的文献求助10
10秒前
orangel完成签到,获得积分10
11秒前
半壶月色半边天完成签到 ,获得积分10
12秒前
tmpstlml发布了新的文献求助10
12秒前
13秒前
13秒前
不安饼干完成签到 ,获得积分10
15秒前
活泼的飞鸟完成签到,获得积分10
15秒前
16秒前
xuyun发布了新的文献求助10
16秒前
16秒前
zzcres完成签到,获得积分10
18秒前
eeeee完成签到 ,获得积分10
18秒前
乐观德地完成签到,获得积分10
19秒前
大个应助yf_zhu采纳,获得10
19秒前
llk发布了新的文献求助10
20秒前
一只大肥猫完成签到,获得积分10
20秒前
20秒前
22秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808