Robust Self-Ensembling Network for Hyperspectral Image Classification

计算机科学 人工智能 高光谱成像 稳健性(进化) 水准点(测量) 机器学习 模式识别(心理学) Boosting(机器学习) 数据挖掘 编码(集合论) 任务(项目管理) 程序设计语言 生物化学 集合(抽象数据类型) 地理 管理 化学 经济 大地测量学 基因
作者
Yonghao Xu,Bo Du,Liangpei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3780-3793 被引量:32
标识
DOI:10.1109/tnnls.2022.3198142
摘要

Recent research has shown the great potential of deep learning algorithms in the hyperspectral image (HSI) classification task.Nevertheless, training these models usually requires a large amount of labeled data.Since the collection of pixel-level annotations for HSI is laborious and time-consuming, developing algorithms that can yield good performance in the small sample size situation is of great significance.In this study, we propose a robust self-ensembling network (RSEN) to address this problem.The proposed RSEN consists of two subnetworks including a base network and an ensemble network.With the constraint of both the supervised loss from the labeled data and the unsupervised loss from the unlabeled data, the base network and the ensemble network can learn from each other, achieving the self-ensembling mechanism.To the best of our knowledge, the proposed method is the first attempt to introduce the self-ensembling technique into the HSI classification task, which provides a different view on how to utilize the unlabeled data in HSI to assist the network training.We further propose a novel consistency filter to increase the robustness of self-ensembling learning.Extensive experiments on three benchmark HSI datasets demonstrate that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.Code is available online (https://github.com/YonghaoXu/RSEN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luoyulin完成签到,获得积分10
刚刚
虚拟的觅山完成签到,获得积分10
刚刚
芋泥波波完成签到,获得积分10
1秒前
闪闪凝冬发布了新的文献求助10
1秒前
yznfly应助zzy采纳,获得40
1秒前
顾矜应助嘻嘻嘻采纳,获得10
2秒前
2秒前
2秒前
SYLH应助Ankher采纳,获得100
2秒前
3秒前
邬若山发布了新的文献求助10
3秒前
3秒前
3秒前
喵2发布了新的文献求助30
4秒前
4秒前
搜集达人应助科研通管家采纳,获得30
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
汤圆完成签到,获得积分10
5秒前
852应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
Feipeng应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
彭于晏应助39hpl采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
棋士应助科研通管家采纳,获得10
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609