量子点
胆固醇氧化酶
费斯特共振能量转移
谷胱甘肽
接受者
猝灭(荧光)
光化学
材料科学
纳米技术
化学
核化学
酶
生物化学
物理
有机化学
荧光
胆固醇
量子力学
凝聚态物理
作者
Lakshita Dewangan,Jyoti Korram,Indrapal Karbhal,Rekha Nagwanshi,Manmohan L. Satnami
标识
DOI:10.1021/acsanm.1c03047
摘要
Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized by hydrothermal treatment of citric acid and triethylamine. The fluorescence resonance energy transfer (FRET)-based fluorescence "switch-off–on" of N-CQD (energy donor) in the presence of MnO2 nanowires (energy acceptor) has been successfully applied to fabricate a fluorometric probe for detection of cholesterol (ChO), glutathione (GSH), acetylcholinesterase (AChE), and chlorpyrifos. MnO2 nanowires (MnO2 NWs) significantly quenched the blue fluorescent emission of N-CQDs by the phenomenon of FRET. The redox reactions of MnO2 with H2O2 and thiolated compounds resulted in the decomposition of MnO2 nanowires (brown) to give Mn2+ ions (colorless), which induced the fluorescence recovery of N-CQDs (turn-on). The interruption of the FRET phenomenon of N-CQD–MnO2 NW composites by the produced H2O2 from the reaction of cholesterol oxidase in the presence of cholesterol, and thiocholine from the reaction of acetylthiocholine in the presence of acetylcholinesterase, causes FL recovery of N-CQDs. The inhibition of AChE by chlorpyrifos induces FL quenching (turn-off) of N-CQD–MnO2 NW composites. The decomposition of MnO2 NWs into Mn2+ in the presence of glutathione resulted in the subsequent FL recovery of N-CQDs. The sensing system shows a sensitive response to cholesterol, glutathione, and chlorpyrifos pesticide, giving LODs and LOQs of 4.89 nM, 7.52 nM, 0.01 μM and 14.83 nM, 22.80 nM, 0.03 μM, respectively. The practical applicability of the proposed probe has been verified by detecting the ChO and GSH in human plasma with satisfactory results.
科研通智能强力驱动
Strongly Powered by AbleSci AI