A Fusion Method to Estimate the State-of-Health of Lithium-ion Batteries

稳健性(进化) 电池(电) 计算机科学 健康状况 电压 噪音(视频) 锂离子电池 人工智能 数据挖掘 算法 可靠性工程 工程类 电气工程 图像(数学) 物理 功率(物理) 基因 化学 量子力学 生物化学
作者
Yajun Zhang,Mengda Cao,Yu Wang,Tao Zhang,Yajie Liu
出处
期刊:2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing) 卷期号:281: 1-6 被引量:1
标识
DOI:10.1109/phm-nanjing52125.2021.9612807
摘要

Accurate state-of-health (SOH) estimation for Lithiumion batteries (LIBs) is vital for the battery management systems (BMS). This paper puts forward a fusion method to estimate battery SOH, which incorporates the incremental capacity analysis (ICA) with the long short-term memory (LSTM) network. First, a revised Lorentzian function-based voltage-capacity (VC) model is adopted to capture the IC curve. By leveraging merely data logged during the constant current (CC) charging stage, battery degradation information contained in the IC curve is concretized as the parameters of the VC model by simple curve fitting. These parameters with specific physical meanings are deemed as features that characterize battery health status. Correlation analysis is then performed for these features, and features of interest (FOIs) are selected as inputs of the LSTM. The LSTM model can learn the long-term dependencies of battery degradation, and thus improve the robustness of the prediction model against noise. Finally, four battery aging datasets with different chemistries are employed for model validation, and results reveal that the proposed method can achieve accurate SOH estimation results, with the maximum mean absolute errors limited within 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑安露完成签到,获得积分10
刚刚
自闭中完成签到,获得积分10
1秒前
蝰蛇完成签到,获得积分10
2秒前
无花果应助疯狂的凝丹采纳,获得30
2秒前
2秒前
bpl完成签到,获得积分10
3秒前
hhh完成签到,获得积分10
3秒前
贴贴发布了新的文献求助10
3秒前
ccyy发布了新的文献求助10
3秒前
青青河边草完成签到,获得积分20
4秒前
魏一刀发布了新的文献求助10
4秒前
敏感的曼香完成签到,获得积分10
4秒前
zeng完成签到,获得积分10
5秒前
kk完成签到,获得积分10
5秒前
XIAOPI完成签到 ,获得积分10
6秒前
wohohoho完成签到,获得积分10
6秒前
可爱的玉米肠完成签到 ,获得积分10
7秒前
尚欣雨完成签到,获得积分10
8秒前
ningning完成签到 ,获得积分10
8秒前
默默新波完成签到 ,获得积分10
8秒前
Bihhh完成签到,获得积分10
9秒前
酷炫的天问完成签到,获得积分10
9秒前
斯文败类应助魏一刀采纳,获得10
10秒前
10秒前
10秒前
幽默囧完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
皛宁完成签到,获得积分10
14秒前
CipherSage应助WANGJD采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
Gaoge发布了新的文献求助10
15秒前
XIAOPI发布了新的文献求助10
16秒前
16秒前
ulung完成签到 ,获得积分10
16秒前
cccf发布了新的文献求助10
17秒前
皇家咖啡完成签到 ,获得积分10
17秒前
茉莉猫哟完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429055
求助须知:如何正确求助?哪些是违规求助? 4542625
关于积分的说明 14181735
捐赠科研通 4460343
什么是DOI,文献DOI怎么找? 2445678
邀请新用户注册赠送积分活动 1436859
关于科研通互助平台的介绍 1414080