A Fusion Method to Estimate the State-of-Health of Lithium-ion Batteries

稳健性(进化) 电池(电) 计算机科学 健康状况 电压 噪音(视频) 锂离子电池 人工智能 数据挖掘 算法 可靠性工程 工程类 电气工程 图像(数学) 物理 功率(物理) 基因 化学 量子力学 生物化学
作者
Yajun Zhang,Mengda Cao,Yu Wang,Tao Zhang,Yajie Liu
出处
期刊:2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing) 卷期号:281: 1-6 被引量:1
标识
DOI:10.1109/phm-nanjing52125.2021.9612807
摘要

Accurate state-of-health (SOH) estimation for Lithiumion batteries (LIBs) is vital for the battery management systems (BMS). This paper puts forward a fusion method to estimate battery SOH, which incorporates the incremental capacity analysis (ICA) with the long short-term memory (LSTM) network. First, a revised Lorentzian function-based voltage-capacity (VC) model is adopted to capture the IC curve. By leveraging merely data logged during the constant current (CC) charging stage, battery degradation information contained in the IC curve is concretized as the parameters of the VC model by simple curve fitting. These parameters with specific physical meanings are deemed as features that characterize battery health status. Correlation analysis is then performed for these features, and features of interest (FOIs) are selected as inputs of the LSTM. The LSTM model can learn the long-term dependencies of battery degradation, and thus improve the robustness of the prediction model against noise. Finally, four battery aging datasets with different chemistries are employed for model validation, and results reveal that the proposed method can achieve accurate SOH estimation results, with the maximum mean absolute errors limited within 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孤独的柠檬完成签到,获得积分20
刚刚
刚刚
kohu发布了新的文献求助10
刚刚
sunhx完成签到,获得积分10
刚刚
萨日呼完成签到,获得积分10
刚刚
高高完成签到,获得积分10
刚刚
宗剑完成签到,获得积分10
1秒前
1秒前
Owen应助鑫鑫采纳,获得10
2秒前
隐形曼青应助wao采纳,获得10
2秒前
鸣笛应助搞怪隶采纳,获得10
2秒前
3秒前
liangzi107655发布了新的文献求助10
3秒前
科研通AI6应助xxx采纳,获得10
3秒前
吕倩发布了新的文献求助10
4秒前
李健的小迷弟应助奉年采纳,获得10
4秒前
5秒前
6秒前
6秒前
困困困困发布了新的文献求助10
6秒前
小黄包子完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
zaizai完成签到,获得积分10
8秒前
上官若男应助tuyfytjt采纳,获得10
8秒前
研友_Z60ObL完成签到,获得积分10
9秒前
小蘑菇应助欢呼尔烟采纳,获得10
9秒前
周宇飞发布了新的文献求助20
9秒前
败者食尘完成签到,获得积分10
10秒前
科目三应助nan采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
彭于晏应助mumu采纳,获得10
10秒前
李爱国应助Fareth采纳,获得10
11秒前
聪慧小霜应助zfcaabbcc采纳,获得10
11秒前
momo发布了新的文献求助10
11秒前
申左一发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562