Anomaly detection in wind turbine SCADA data for power curve cleaning

SCADA系统 涡轮机 异常检测 离群值 风力发电 航程(航空) 高斯分布 异常(物理) 混合模型 计算机科学 功率(物理) 工程类 数据挖掘 人工智能 机械工程 量子力学 电气工程 物理 航空航天工程 凝聚态物理
作者
Rory Morrison,Xiaolei Liu,Zi Lin
出处
期刊:Renewable Energy [Elsevier]
卷期号:184: 473-486 被引量:57
标识
DOI:10.1016/j.renene.2021.11.118
摘要

Wind turbine power curve cleaning, by way of removing curtailment, stoppage, and other anomalies, is an essential step in making raw data useable for further analysis, such as determining turbine performance, site characteristics, or improving forecasting models. Typically, data comes as SCADA (Supervisory Control and Data Acquisition) data, so contains not only environmental and turbine performance data but also the control action imposed on the turbine by the operator. Many different anomaly detection (AD) methods have been proposed to clean power curves; however, few papers have explored filtering explicit and obvious anomalies from the SCADA prior to running AD. This paper actively explores this filtering impact by comparing the performances of 4 different AD methods with/without filtering. These are: iForest, Local Outlier Factor, Gaussian Mixture Models, and k-Nearest Neighbours. Each approach is evaluated in terms of prediction error, data removal rates, and ability to maintain the underlying wind statistical characteristics. The results show the effectiveness of filtering with every technique showing improvement compared to its unfiltered counterpart. Furthermore, Gaussian Mixture Models are shown to provide favourable accuracy whilst maintaining wind variability, however, with the wide range of performances of methods, a user's choice may be different depending on their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
森眸应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得30
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
真实的麦片完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
平淡映萱完成签到 ,获得积分10
2秒前
2秒前
神勇的冬瓜完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
笙惗雪完成签到,获得积分10
4秒前
小飞侠07完成签到,获得积分10
5秒前
Albert完成签到,获得积分10
6秒前
6秒前
kchrisuzad发布了新的文献求助10
6秒前
管朋维完成签到,获得积分10
6秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187