已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non–Small Cell Lung Cancer

医学 队列 内科学 肿瘤科 接收机工作特性 回顾性队列研究 阶段(地层学) 肺癌 转移 队列研究 人口 生存分析 癌症 比例危险模型 古生物学 环境卫生 生物
作者
Yifan Zhong,Yunlang She,Jiajun Deng,Shouyu Chen,Tingting Wang,Minglei Yang,Minjie Ma,Yongxiang Song,Haoyu Qi,Yin Wang,Jingyun Shi,Chunyan Wu,Dong Xie,Chang Chen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 200-211 被引量:51
标识
DOI:10.1148/radiol.2021210902
摘要

Background Preoperative mediastinal staging is crucial for the optimal management of clinical stage I non–small cell lung cancer (NSCLC). Purpose To develop a deep learning signature for N2 metastasis prediction and prognosis stratification in clinical stage I NSCLC. Materials and Methods In this retrospective study conducted from May 2020 to October 2020 in a population with clinical stage I NSCLC, an internal cohort was adopted to establish a deep learning signature. Subsequently, the predictive efficacy and biologic basis of the proposed signature were investigated in an external cohort. A multicenter diagnostic trial (registration number: ChiCTR2000041310) was also performed to evaluate its clinical utility. Finally, on the basis of the N2 risk scores, the instructive significance of the signature in prognostic stratification was explored. The diagnostic efficiency was quantified with the area under the receiver operating characteristic curve (AUC), and the survival outcomes were assessed using the Cox proportional hazards model. Results A total of 3096 patients (mean age ± standard deviation, 60 years ± 9; 1703 men) were included in the study. The proposed signature achieved AUCs of 0.82, 0.81, and 0.81 in an internal test set (n = 266), external test cohort (n = 133), and prospective test cohort (n = 300), respectively. In addition, higher deep learning scores were associated with a lower frequency of EGFR mutation (P = .04), higher rate of ALK fusion (P = .02), and more activation of pathways of tumor proliferation (P < .001). Furthermore, in the internal test set and external cohort, higher deep learning scores were predictive of poorer overall survival (adjusted hazard ratio, 2.9; 95% CI: 1.2, 6.9; P = .02) and recurrence-free survival (adjusted hazard ratio, 3.2; 95% CI: 1.4, 7.4; P = .007). Conclusion The deep learning signature could accurately predict N2 disease and stratify prognosis in clinical stage I non–small cell lung cancer. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Park and Lee in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
金灶沐完成签到 ,获得积分10
3秒前
wangliangyu发布了新的文献求助10
3秒前
tt完成签到 ,获得积分10
4秒前
dsjlove完成签到,获得积分10
8秒前
8秒前
树下发布了新的文献求助10
8秒前
Huang2547完成签到 ,获得积分10
10秒前
故酒完成签到 ,获得积分10
10秒前
kannnliannn完成签到 ,获得积分10
10秒前
11秒前
NexusExplorer应助娇气的万恶采纳,获得10
12秒前
12秒前
幽默妙柏发布了新的文献求助10
12秒前
脑洞疼应助魔幻的从阳采纳,获得10
12秒前
雅典的宠儿完成签到 ,获得积分10
15秒前
Anxia发布了新的文献求助10
15秒前
帅气的秘密完成签到 ,获得积分10
17秒前
莓莓MM完成签到 ,获得积分10
18秒前
HRZ完成签到 ,获得积分10
20秒前
一桶吃八碗完成签到,获得积分10
24秒前
暮商完成签到 ,获得积分10
24秒前
Leah_7完成签到,获得积分10
26秒前
27秒前
29秒前
言午完成签到,获得积分10
30秒前
31秒前
乐观完成签到 ,获得积分10
31秒前
32秒前
WHY完成签到 ,获得积分10
34秒前
766465完成签到 ,获得积分10
34秒前
35秒前
传奇3应助牙牙采纳,获得10
36秒前
顺利山柏完成签到 ,获得积分10
36秒前
爆米花应助kiki采纳,获得10
37秒前
树下完成签到,获得积分10
37秒前
龙骑士25发布了新的文献求助30
38秒前
wanci应助H_C采纳,获得10
38秒前
天天快乐应助灵巧大地采纳,获得10
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322470
求助须知:如何正确求助?哪些是违规求助? 2953826
关于积分的说明 8566807
捐赠科研通 2631351
什么是DOI,文献DOI怎么找? 1439771
科研通“疑难数据库(出版商)”最低求助积分说明 667207
邀请新用户注册赠送积分活动 653696