Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non–Small Cell Lung Cancer

医学 内科学 肿瘤科 阶段(地层学) 肺癌 转移 癌症 生物 古生物学
作者
Yifan Zhong,Yunlang She,Jiajun Deng,Shouyu Chen,Tingting Wang,Minglei Yang,Minjie Ma,Yongxiang Song,Haoyu Qi,Yin Wang,Jingyun Shi,Chunyan Wu,Dong Xie,Chang Chen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 200-211 被引量:63
标识
DOI:10.1148/radiol.2021210902
摘要

Background Preoperative mediastinal staging is crucial for the optimal management of clinical stage I non–small cell lung cancer (NSCLC). Purpose To develop a deep learning signature for N2 metastasis prediction and prognosis stratification in clinical stage I NSCLC. Materials and Methods In this retrospective study conducted from May 2020 to October 2020 in a population with clinical stage I NSCLC, an internal cohort was adopted to establish a deep learning signature. Subsequently, the predictive efficacy and biologic basis of the proposed signature were investigated in an external cohort. A multicenter diagnostic trial (registration number: ChiCTR2000041310) was also performed to evaluate its clinical utility. Finally, on the basis of the N2 risk scores, the instructive significance of the signature in prognostic stratification was explored. The diagnostic efficiency was quantified with the area under the receiver operating characteristic curve (AUC), and the survival outcomes were assessed using the Cox proportional hazards model. Results A total of 3096 patients (mean age ± standard deviation, 60 years ± 9; 1703 men) were included in the study. The proposed signature achieved AUCs of 0.82, 0.81, and 0.81 in an internal test set (n = 266), external test cohort (n = 133), and prospective test cohort (n = 300), respectively. In addition, higher deep learning scores were associated with a lower frequency of EGFR mutation (P = .04), higher rate of ALK fusion (P = .02), and more activation of pathways of tumor proliferation (P < .001). Furthermore, in the internal test set and external cohort, higher deep learning scores were predictive of poorer overall survival (adjusted hazard ratio, 2.9; 95% CI: 1.2, 6.9; P = .02) and recurrence-free survival (adjusted hazard ratio, 3.2; 95% CI: 1.4, 7.4; P = .007). Conclusion The deep learning signature could accurately predict N2 disease and stratify prognosis in clinical stage I non–small cell lung cancer. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Park and Lee in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由语柳给自由语柳的求助进行了留言
2秒前
3秒前
宋小威发布了新的文献求助10
4秒前
5秒前
6秒前
Owen应助洁净的大山采纳,获得10
6秒前
7秒前
木木198022完成签到,获得积分10
7秒前
8秒前
糊涂生活糊涂过完成签到,获得积分10
8秒前
rr完成签到,获得积分10
9秒前
李悟尔发布了新的文献求助10
9秒前
pearlwh1227发布了新的文献求助10
10秒前
10秒前
科研小白完成签到,获得积分10
11秒前
笨笨沛文完成签到,获得积分10
12秒前
Serein发布了新的文献求助10
12秒前
12秒前
复杂的雨寒完成签到,获得积分20
13秒前
郭小宝发布了新的文献求助10
13秒前
14秒前
14秒前
Lucas应助李悟尔采纳,获得50
14秒前
15秒前
15秒前
小麦完成签到,获得积分10
17秒前
红箭烟雨发布了新的文献求助10
17秒前
xkh发布了新的文献求助10
19秒前
XWT发布了新的文献求助10
19秒前
dou发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
Bella完成签到 ,获得积分10
23秒前
玉玉完成签到,获得积分10
24秒前
红箭烟雨完成签到,获得积分10
24秒前
LLLLLJ完成签到,获得积分10
25秒前
A梦完成签到,获得积分10
25秒前
pppy完成签到,获得积分10
25秒前
Gaahung完成签到,获得积分10
27秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182