Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non–Small Cell Lung Cancer

医学 内科学 肿瘤科 阶段(地层学) 肺癌 转移 癌症 生物 古生物学
作者
Yifan Zhong,Yunlang She,Jiajun Deng,Shouyu Chen,Tingting Wang,Minglei Yang,Minjie Ma,Yongxiang Song,Haoyu Qi,Yin Wang,Jingyun Shi,Chunyan Wu,Dong Xie,Chang Chen,for the Multi-omics Classifier for Pulmonary Nodules (MISSION) Collaborative Group
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 200-211 被引量:86
标识
DOI:10.1148/radiol.2021210902
摘要

Background Preoperative mediastinal staging is crucial for the optimal management of clinical stage I non-small cell lung cancer (NSCLC). Purpose To develop a deep learning signature for N2 metastasis prediction and prognosis stratification in clinical stage I NSCLC. Materials and Methods In this retrospective study conducted from May 2020 to October 2020 in a population with clinical stage I NSCLC, an internal cohort was adopted to establish a deep learning signature. Subsequently, the predictive efficacy and biologic basis of the proposed signature were investigated in an external cohort. A multicenter diagnostic trial (registration number: ChiCTR2000041310) was also performed to evaluate its clinical utility. Finally, on the basis of the N2 risk scores, the instructive significance of the signature in prognostic stratification was explored. The diagnostic efficiency was quantified with the area under the receiver operating characteristic curve (AUC), and the survival outcomes were assessed using the Cox proportional hazards model. Results A total of 3096 patients (mean age ± standard deviation, 60 years ± 9; 1703 men) were included in the study. The proposed signature achieved AUCs of 0.82, 0.81, and 0.81 in an internal test set (n = 266), external test cohort (n = 133), and prospective test cohort (n = 300), respectively. In addition, higher deep learning scores were associated with a lower frequency of EGFR mutation (P = .04), higher rate of ALK fusion (P = .02), and more activation of pathways of tumor proliferation (P < .001). Furthermore, in the internal test set and external cohort, higher deep learning scores were predictive of poorer overall survival (adjusted hazard ratio, 2.9; 95% CI: 1.2, 6.9; P = .02) and recurrence-free survival (adjusted hazard ratio, 3.2; 95% CI: 1.4, 7.4; P = .007). Conclusion The deep learning signature could accurately predict N2 disease and stratify prognosis in clinical stage I non-small cell lung cancer. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Park and Lee in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的小兔子完成签到,获得积分10
刚刚
1秒前
深情安青应助自由草莓采纳,获得10
1秒前
1秒前
司马雨泽完成签到,获得积分10
1秒前
orixero应助颜老大采纳,获得10
2秒前
2秒前
2秒前
mimiflying发布了新的文献求助20
2秒前
贝贝发布了新的文献求助30
2秒前
lvbowen发布了新的文献求助10
3秒前
3秒前
人123456完成签到,获得积分10
3秒前
111完成签到,获得积分10
3秒前
橙子完成签到,获得积分10
3秒前
齐朕完成签到,获得积分10
4秒前
4秒前
科研通AI6应助小语丝采纳,获得10
4秒前
早早完成签到,获得积分20
5秒前
Twonej应助王木木采纳,获得30
5秒前
Jasper应助damang采纳,获得10
5秒前
5秒前
5秒前
Mortimer完成签到,获得积分10
5秒前
6秒前
freebird应助zp4采纳,获得10
6秒前
huiee发布了新的文献求助10
6秒前
6秒前
星奕完成签到 ,获得积分10
6秒前
7秒前
lvbowen完成签到,获得积分10
8秒前
GRJ发布了新的文献求助30
8秒前
搜集达人应助夕荀采纳,获得10
8秒前
gaochanglu发布了新的文献求助10
8秒前
8秒前
所所应助jassin采纳,获得10
8秒前
陈涛完成签到,获得积分10
8秒前
温婉的老五完成签到,获得积分20
9秒前
Wu关注了科研通微信公众号
9秒前
yangqi完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271