已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non–Small Cell Lung Cancer

医学 内科学 肿瘤科 阶段(地层学) 肺癌 转移 癌症 生物 古生物学
作者
Yifan Zhong,Yunlang She,Jiajun Deng,Shouyu Chen,Tingting Wang,Minglei Yang,Minjie Ma,Yongxiang Song,Haoyu Qi,Yin Wang,Jingyun Shi,Chunyan Wu,Dong Xie,Chang Chen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 200-211 被引量:63
标识
DOI:10.1148/radiol.2021210902
摘要

Background Preoperative mediastinal staging is crucial for the optimal management of clinical stage I non–small cell lung cancer (NSCLC). Purpose To develop a deep learning signature for N2 metastasis prediction and prognosis stratification in clinical stage I NSCLC. Materials and Methods In this retrospective study conducted from May 2020 to October 2020 in a population with clinical stage I NSCLC, an internal cohort was adopted to establish a deep learning signature. Subsequently, the predictive efficacy and biologic basis of the proposed signature were investigated in an external cohort. A multicenter diagnostic trial (registration number: ChiCTR2000041310) was also performed to evaluate its clinical utility. Finally, on the basis of the N2 risk scores, the instructive significance of the signature in prognostic stratification was explored. The diagnostic efficiency was quantified with the area under the receiver operating characteristic curve (AUC), and the survival outcomes were assessed using the Cox proportional hazards model. Results A total of 3096 patients (mean age ± standard deviation, 60 years ± 9; 1703 men) were included in the study. The proposed signature achieved AUCs of 0.82, 0.81, and 0.81 in an internal test set (n = 266), external test cohort (n = 133), and prospective test cohort (n = 300), respectively. In addition, higher deep learning scores were associated with a lower frequency of EGFR mutation (P = .04), higher rate of ALK fusion (P = .02), and more activation of pathways of tumor proliferation (P < .001). Furthermore, in the internal test set and external cohort, higher deep learning scores were predictive of poorer overall survival (adjusted hazard ratio, 2.9; 95% CI: 1.2, 6.9; P = .02) and recurrence-free survival (adjusted hazard ratio, 3.2; 95% CI: 1.4, 7.4; P = .007). Conclusion The deep learning signature could accurately predict N2 disease and stratify prognosis in clinical stage I non–small cell lung cancer. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Park and Lee in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
霸天虎发布了新的文献求助30
3秒前
5秒前
超级冰巧关注了科研通微信公众号
6秒前
Cosmosurfer完成签到,获得积分10
7秒前
Lidocaine发布了新的文献求助10
7秒前
tzz发布了新的文献求助10
7秒前
远山发布了新的文献求助10
11秒前
RR发布了新的文献求助10
14秒前
whqpeter完成签到,获得积分10
14秒前
xiaoyuyuyu完成签到 ,获得积分10
14秒前
新定义发布了新的文献求助10
16秒前
乐乐应助燕海雪采纳,获得10
16秒前
kei发布了新的文献求助10
16秒前
zzmyyds完成签到,获得积分10
18秒前
守墓人发布了新的文献求助10
19秒前
kesler驳回了烟花应助
24秒前
何柯完成签到,获得积分10
27秒前
28秒前
芬芬完成签到,获得积分10
28秒前
30秒前
Jackylee完成签到,获得积分10
31秒前
33秒前
贱小贱完成签到,获得积分10
33秒前
龙龙不卷发布了新的文献求助10
34秒前
新定义完成签到,获得积分10
34秒前
雨柏完成签到 ,获得积分10
42秒前
搜集达人应助龙龙不卷采纳,获得10
43秒前
兜兜完成签到 ,获得积分10
43秒前
51秒前
52秒前
52秒前
52秒前
Splaink发布了新的文献求助10
54秒前
56秒前
dsahd2完成签到,获得积分10
1分钟前
1分钟前
1分钟前
燕海雪发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253415
求助须知:如何正确求助?哪些是违规求助? 4416784
关于积分的说明 13750464
捐赠科研通 4289176
什么是DOI,文献DOI怎么找? 2353280
邀请新用户注册赠送积分活动 1349992
关于科研通互助平台的介绍 1309831