Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non–Small Cell Lung Cancer

医学 队列 内科学 肿瘤科 接收机工作特性 回顾性队列研究 阶段(地层学) 肺癌 转移 队列研究 人口 生存分析 癌症 比例危险模型 古生物学 环境卫生 生物
作者
Yifan Zhong,Yunlang She,Jiajun Deng,Shouyu Chen,Tingting Wang,Minglei Yang,Minjie Ma,Yongxiang Song,Haoyu Qi,Yin Wang,Jingyun Shi,Chunyan Wu,Dong Xie,Chang Chen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 200-211 被引量:51
标识
DOI:10.1148/radiol.2021210902
摘要

Background Preoperative mediastinal staging is crucial for the optimal management of clinical stage I non–small cell lung cancer (NSCLC). Purpose To develop a deep learning signature for N2 metastasis prediction and prognosis stratification in clinical stage I NSCLC. Materials and Methods In this retrospective study conducted from May 2020 to October 2020 in a population with clinical stage I NSCLC, an internal cohort was adopted to establish a deep learning signature. Subsequently, the predictive efficacy and biologic basis of the proposed signature were investigated in an external cohort. A multicenter diagnostic trial (registration number: ChiCTR2000041310) was also performed to evaluate its clinical utility. Finally, on the basis of the N2 risk scores, the instructive significance of the signature in prognostic stratification was explored. The diagnostic efficiency was quantified with the area under the receiver operating characteristic curve (AUC), and the survival outcomes were assessed using the Cox proportional hazards model. Results A total of 3096 patients (mean age ± standard deviation, 60 years ± 9; 1703 men) were included in the study. The proposed signature achieved AUCs of 0.82, 0.81, and 0.81 in an internal test set (n = 266), external test cohort (n = 133), and prospective test cohort (n = 300), respectively. In addition, higher deep learning scores were associated with a lower frequency of EGFR mutation (P = .04), higher rate of ALK fusion (P = .02), and more activation of pathways of tumor proliferation (P < .001). Furthermore, in the internal test set and external cohort, higher deep learning scores were predictive of poorer overall survival (adjusted hazard ratio, 2.9; 95% CI: 1.2, 6.9; P = .02) and recurrence-free survival (adjusted hazard ratio, 3.2; 95% CI: 1.4, 7.4; P = .007). Conclusion The deep learning signature could accurately predict N2 disease and stratify prognosis in clinical stage I non–small cell lung cancer. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Park and Lee in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weven完成签到 ,获得积分10
刚刚
zzh319完成签到,获得积分10
1秒前
song完成签到,获得积分20
1秒前
上官若男应助柔弱紊采纳,获得10
3秒前
3秒前
Cheng发布了新的文献求助10
5秒前
Zzzzan发布了新的文献求助10
6秒前
自信的竹员外完成签到,获得积分10
6秒前
王巧巧完成签到,获得积分10
9秒前
EadonChen完成签到,获得积分10
9秒前
A,w携念e行ོ完成签到,获得积分10
9秒前
10秒前
xibei完成签到 ,获得积分10
10秒前
大个应助854fycchjh采纳,获得30
10秒前
cdercder应助bitter采纳,获得20
11秒前
11秒前
111发布了新的文献求助10
11秒前
刘阿婷啾啾完成签到,获得积分10
12秒前
13秒前
J11发布了新的文献求助10
15秒前
听风完成签到,获得积分10
15秒前
小闪光完成签到 ,获得积分10
16秒前
温柔的夜柳完成签到,获得积分10
17秒前
zho发布了新的文献求助10
17秒前
18秒前
18秒前
爆米花应助shjyang采纳,获得10
18秒前
所所应助jack采纳,获得10
19秒前
19秒前
19秒前
科研通AI5应助糯米糍采纳,获得10
20秒前
共享精神应助糯米糍采纳,获得10
20秒前
汉堡包应助糯米糍采纳,获得10
20秒前
Orange应助糯米糍采纳,获得10
20秒前
大个应助糯米糍采纳,获得10
20秒前
20秒前
20秒前
Orange应助糯米糍采纳,获得10
20秒前
研友_VZG7GZ应助糯米糍采纳,获得10
20秒前
慕青应助糯米糍采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782