Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation

曲率 膜曲率 拉明 生物物理学 物理 单层 染色质 顶点(图论) 核心 顶点模型 细胞生物学 几何学 生物 纳米技术 材料科学 生物化学 数学 量子力学 DNA 离散数学 小泡 图形
作者
Marine Luciano,Shi-Lei Xue,Winnok H. De Vos,Lorena Redondo‐Morata,Mathieu Surin,Frank Lafont,Édouard Hannezo,Sylvain Gabriele
出处
期刊:Nature Physics [Springer Nature]
卷期号:17 (12): 1382-1390 被引量:104
标识
DOI:10.1038/s41567-021-01374-1
摘要

The early development of many organisms involves the folding of cell monolayers, but this behaviour is difficult to reproduce in vitro; therefore, both mechanistic causes and effects of local curvature remain unclear. Here we study epithelial cell monolayers on corrugated hydrogels engineered into wavy patterns, examining how concave and convex curvatures affect cellular and nuclear shape. We find that substrate curvature affects monolayer thickness, which is larger in valleys than crests. We show that this feature generically arises in a vertex model, leading to the hypothesis that cells may sense curvature by modifying the thickness of the tissue. We find that local curvature also affects nuclear morphology and positioning, which we explain by extending the vertex model to take into account membrane–nucleus interactions, encoding thickness modulation in changes to nuclear deformation and position. We propose that curvature governs the spatial distribution of yes-associated proteins via nuclear shape and density changes. We show that curvature also induces significant variations in lamins, chromatin condensation and cell proliferation rate in folded epithelial tissues. Together, this work identifies active cell mechanics and nuclear mechanoadaptation as the key players of the mechanistic regulation of epithelia to substrate curvature. Experiments on cell monolayers on corrugated hydrogels reveal the effects of local curvature on the shape of cells and nuclei. A vertex model lends support to the idea that the modulation of tissue thickness may enable curvature sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
归仔发布了新的文献求助10
1秒前
漫步海滩发布了新的文献求助10
1秒前
1秒前
慕青应助满意若灵采纳,获得10
1秒前
tier3发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
chenling完成签到,获得积分10
2秒前
甜甜信封完成签到,获得积分10
3秒前
勤恳的火龙果完成签到,获得积分10
3秒前
3秒前
荔枝多酚完成签到,获得积分10
3秒前
3秒前
高贵振家发布了新的文献求助10
3秒前
3秒前
摩奥锚完成签到 ,获得积分10
4秒前
迷人成协完成签到,获得积分10
5秒前
5秒前
大傻春完成签到,获得积分10
7秒前
美好的雨南完成签到,获得积分10
7秒前
sun发布了新的文献求助10
7秒前
7秒前
黑胡椒发布了新的文献求助10
8秒前
AHR完成签到,获得积分10
8秒前
Anby发布了新的文献求助10
8秒前
8秒前
科研通AI6应助King采纳,获得10
8秒前
xm完成签到,获得积分10
9秒前
nasa完成签到,获得积分10
9秒前
zxyan完成签到,获得积分20
9秒前
谢晓东发布了新的文献求助10
9秒前
大大的寄吧完成签到,获得积分10
10秒前
11秒前
端庄的幻嫣关注了科研通微信公众号
11秒前
11秒前
11秒前
乐乐应助呀呀呀采纳,获得10
11秒前
cubie001完成签到,获得积分10
11秒前
zxy125发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836