已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Recurrent All-Pairs Field Transforms for Particle Image Velocimetry

人工智能 粒子图像测速 无监督学习 计算机科学 深度学习 卷积神经网络 光流 领域(数学) 机器学习 一般化 人工神经网络 模式识别(心理学) 图像(数学) 数学 物理 数学分析 纯数学 湍流 热力学
作者
Christian Lagemann,Michael Klaas,Wolfgang Schröder
出处
期刊:International Symposium on Particle Image Velocimetry 卷期号:1 (1) 被引量:4
标识
DOI:10.18409/ispiv.v1i1.120
摘要

Convolutional neural networks have been successfully used in a variety of tasks and recently have been adapted to improve processing steps in Particle-Image Velocimetry (PIV). Recurrent All-Pairs Fields Transforms (RAFT) as an optical flow estimation backbone achieve a new state-of-the-art accuracy on public synthetic PIV datasets, generalize well to unknown real-world experimental data, and allow a significantly higher spatial resolution compared to state-of-the-art PIV algorithms based on cross-correlation methods. However, the huge diversity in dynamic flows and varying particle image conditions require PIV processing schemes to have high generalization capabilities to unseen flow and lighting conditions. If these conditions vary strongly compared to the synthetic training data, the performance of fully supervised learning based PIV tools might degrade. To tackle these issues, our training procedure is augmented by an unsupervised learning paradigm which remedy the need of a general synthetic dataset and theoretically boosts the inference capability of a deep learning model in a way being more relevant to challenging real-world experimental data. Therefore, we propose URAFT-PIV, an unsupervised deep neural network architecture for optical flow estimation in PIV applications and show that our combination of state-of-the-art deep learning pipelines and unsupervised learning achieves a new state-of-the-art accuracy for unsupervised PIV networks while performing similar to supervisedly trained LiteFlowNet based competitors. Furthermore, we show that URAFT-PIV also performs well under more challenging flow field and image conditions such as low particle density and changing light conditions and demonstrate its generalization capability based on an outof-the-box application to real-world experimental data. Our tests also suggest that current state-of-the-art loss functions might be a limiting factor for the performance of unsupervised optical flow estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JamesPei应助鲸落采纳,获得10
2秒前
Ava应助王某采纳,获得10
5秒前
imcwj完成签到 ,获得积分10
6秒前
一步一脚印完成签到,获得积分10
8秒前
山梦完成签到 ,获得积分10
12秒前
feedyoursoul完成签到 ,获得积分10
14秒前
科研小白完成签到 ,获得积分10
15秒前
xiuxiu完成签到 ,获得积分0
17秒前
17秒前
17秒前
活泼的白开水完成签到,获得积分10
18秒前
尊敬的驳完成签到,获得积分10
18秒前
19秒前
123完成签到,获得积分10
19秒前
yingying完成签到 ,获得积分10
20秒前
yuanyuan发布了新的文献求助10
22秒前
缥缈的映萱完成签到,获得积分20
22秒前
22秒前
小白完成签到 ,获得积分10
23秒前
23秒前
HugginBearOuO完成签到,获得积分10
23秒前
23秒前
HYD完成签到 ,获得积分10
26秒前
liubai发布了新的文献求助30
26秒前
峻萱完成签到 ,获得积分10
27秒前
栗子完成签到,获得积分10
28秒前
28秒前
GG发布了新的文献求助10
29秒前
31秒前
怡然剑成完成签到 ,获得积分10
31秒前
32秒前
鲸落完成签到,获得积分10
32秒前
34秒前
34秒前
Malik发布了新的文献求助10
36秒前
满意妙梦发布了新的文献求助10
36秒前
23533213发布了新的文献求助10
36秒前
鲸落发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685229
关于积分的说明 14838214
捐赠科研通 4669062
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505449
关于科研通互助平台的介绍 1470833