Unsupervised Recurrent All-Pairs Field Transforms for Particle Image Velocimetry

人工智能 粒子图像测速 无监督学习 计算机科学 深度学习 卷积神经网络 光流 领域(数学) 机器学习 一般化 人工神经网络 模式识别(心理学) 图像(数学) 数学 物理 数学分析 热力学 湍流 纯数学
作者
Christian Lagemann,Michael Klaas,Wolfgang Schröder
出处
期刊:International Symposium on Particle Image Velocimetry 卷期号:1 (1) 被引量:4
标识
DOI:10.18409/ispiv.v1i1.120
摘要

Convolutional neural networks have been successfully used in a variety of tasks and recently have been adapted to improve processing steps in Particle-Image Velocimetry (PIV). Recurrent All-Pairs Fields Transforms (RAFT) as an optical flow estimation backbone achieve a new state-of-the-art accuracy on public synthetic PIV datasets, generalize well to unknown real-world experimental data, and allow a significantly higher spatial resolution compared to state-of-the-art PIV algorithms based on cross-correlation methods. However, the huge diversity in dynamic flows and varying particle image conditions require PIV processing schemes to have high generalization capabilities to unseen flow and lighting conditions. If these conditions vary strongly compared to the synthetic training data, the performance of fully supervised learning based PIV tools might degrade. To tackle these issues, our training procedure is augmented by an unsupervised learning paradigm which remedy the need of a general synthetic dataset and theoretically boosts the inference capability of a deep learning model in a way being more relevant to challenging real-world experimental data. Therefore, we propose URAFT-PIV, an unsupervised deep neural network architecture for optical flow estimation in PIV applications and show that our combination of state-of-the-art deep learning pipelines and unsupervised learning achieves a new state-of-the-art accuracy for unsupervised PIV networks while performing similar to supervisedly trained LiteFlowNet based competitors. Furthermore, we show that URAFT-PIV also performs well under more challenging flow field and image conditions such as low particle density and changing light conditions and demonstrate its generalization capability based on an outof-the-box application to real-world experimental data. Our tests also suggest that current state-of-the-art loss functions might be a limiting factor for the performance of unsupervised optical flow estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人素发布了新的文献求助10
2秒前
橙子完成签到,获得积分10
2秒前
3秒前
5秒前
5秒前
wxy完成签到,获得积分10
8秒前
8秒前
10秒前
笑傲发布了新的文献求助10
11秒前
丘比特应助迷人素采纳,获得10
12秒前
12秒前
13秒前
13秒前
15秒前
Lee2000发布了新的文献求助10
16秒前
zou发布了新的文献求助10
16秒前
徐若楠发布了新的文献求助10
17秒前
19秒前
lin完成签到,获得积分10
19秒前
Elsa完成签到,获得积分10
19秒前
21秒前
23秒前
迷人素完成签到,获得积分10
23秒前
能干世界发布了新的文献求助10
23秒前
yhyhyhyh发布了新的文献求助10
24秒前
笑傲完成签到,获得积分20
24秒前
CodeCraft应助徐若楠采纳,获得10
25秒前
麦兜完成签到,获得积分10
25秒前
shawn发布了新的文献求助30
27秒前
28秒前
微光完成签到,获得积分10
29秒前
Lee2000完成签到,获得积分20
33秒前
想人陪的采蓝完成签到 ,获得积分20
33秒前
iCloud完成签到,获得积分10
34秒前
34秒前
过过过发布了新的文献求助10
34秒前
1128完成签到 ,获得积分10
34秒前
haowu发布了新的文献求助10
34秒前
36秒前
洪山老狗完成签到,获得积分10
37秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228