可药性
药物发现
深度学习
计算机科学
人工智能
药物开发
药品
机器学习
水准点(测量)
数据科学
生物信息学
医学
药理学
生物
基因
地理
生物化学
大地测量学
作者
Jintae Kim,Sera Park,Dongbo Min,Wankyu Kim
摘要
Drug discovery based on artificial intelligence has been in the spotlight recently as it significantly reduces the time and cost required for developing novel drugs. With the advancement of deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based methodologies are emerging at all steps of drug development processes. In particular, pharmaceutical chemists have faced significant issues with regard to selecting and designing potential drugs for a target of interest to enter preclinical testing. The two major challenges are prediction of interactions between drugs and druggable targets and generation of novel molecular structures suitable for a target of interest. Therefore, we reviewed recent deep-learning applications in drug-target interaction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive summary of a variety of drug and protein representations, DL models, and commonly used benchmark datasets or tools for model training and testing. Finally, we present the remaining challenges for the promising future of DL-based DTI prediction and de novo drug design.
科研通智能强力驱动
Strongly Powered by AbleSci AI