Classification of Remote Sensing Images With Parameterized Quantum Gates

计算机科学 人工智能 模式识别(心理学) 降维 多光谱图像 参数化复杂度 维数之咒 阈值 上下文图像分类 量子位元 自编码 深度学习 图像(数学) 量子 算法 物理 量子力学
作者
Soronzonbold Otgonbaatar,Mihai Datcu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:8
标识
DOI:10.1109/lgrs.2021.3108014
摘要

This letter studies how to program and assess a parameterized quantum circuit (PQC) for classifying Earth observation (EO) satellite images. In this exploratory study, we assess a PQC for classifying a two-label EO image dataset and compare it with a classic deep learning classifier. We use the PQC with an input space of only 17 quantum bits (qubits) due to the current limitations of quantum technology. As a real-world image for EO, we selected the Eurosat dataset obtained from multispectral Sentinel-2 images as a training dataset and a Sentinel-2 image of Berlin, Germany, as a test image. However, the high dimensionality of our images is incompatible with the PQC input domain of 17 qubits. Hence, we had to reduce the dimensionality of the input images for this two-label case to a vector with 16 elements; the 17th qubit remains reserved for storing label information. We employed a very deep convolutional network with an autoencoder as a technique for the dimensionality reduction of the input image, and we mapped the dimensionally reduced image onto 16 qubits by means of parameter thresholding. Then, we used a PQC to classify the two-label content of the dimensionally reduced Eurosat image dataset. A PQC classifies the Eurosat images with high accuracy as a classic deep learning method (and with even better accuracy in some instances). From our experiment, we derived and enhanced deeper insight into programming future gate-based quantum computers for many practical problems in EO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DengJJJ完成签到,获得积分10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
1秒前
ruirui_love完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得50
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
小王同学应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
11111发布了新的文献求助10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得20
1秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得30
2秒前
2秒前
bkagyin应助潘继坤采纳,获得10
2秒前
3秒前
4秒前
无花果应助11111采纳,获得10
5秒前
完美的钢笔完成签到,获得积分10
5秒前
wx0816发布了新的文献求助10
5秒前
6秒前
Lucas应助雪山飞虹采纳,获得10
6秒前
快乐的友易完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337