Application of deep learning image reconstruction algorithm to improve image quality in CT angiography of children with Takayasu arteritis

医学 图像质量 迭代重建 图像噪声 氡变换 核医学 放射科 血管造影 降主动脉 算法 腹主动脉 计算机断层血管造影
作者
Jihang Sun,Haoyan Li,Haiyun Li,Michelle Li,Yingzi Gao,Zuofu Zhou,Yun Peng
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-8
标识
DOI:10.3233/xst-211033
摘要

BACKGROUND: The inflammatory indexes of children with Takayasu arteritis (TAK) usually tend to be normal immediately after treatment, therefore, CT angiography (CTA) has become an important method to evaluate the status of TAK and sometime is even more sensitive than laboratory test results. OBJECTIVE: To evaluate image quality improvement in CTA of children diagnosed with TAK using a deep learning image reconstruction (DLIR) in comparison to other image reconstruction algorithms. METHODS: hirty-two TAK patients (9.14±4.51 years old) underwent neck, chest and abdominal CTA using 100 kVp were enrolled. Images were reconstructed at 0.625 mm slice thickness using Filtered Back-Projection (FBP), 50%adaptive statistical iterative reconstruction-V (ASIR-V), 100%ASIR-V and DLIR with high setting (DLIR-H). CT number and standard deviation (SD) of the descending aorta and back muscle were measured and contrast-to-noise ratio (CNR) for aorta was calculated. The vessel visualization, overall image noise and diagnostic confidence were evaluated using a 5-point scale (5, excellent; 3, acceptable) by 2 observers. RESULTS: There was no significant difference in CT number across images reconstructed using different algorithms. Image noise values (in HU) were 31.36±6.01, 24.96±4.69, 18.46±3.91 and 15.58±3.65, and CNR values for aorta were 11.93±2.12, 15.66±2.37, 22.54±3.34 and 24.02±4.55 using FBP, 50%ASIR-V, 100%ASIR-V and DLIR-H, respectively. The 100%ASIR-V and DLIR-H images had similar noise and CNR (all P > 0.05), and both had lower noise and higher CNR than FBP and 50%ASIR-V images (all P < 0.05). The subjective evaluation suggested that all images were diagnostic for large arteries, however, only 50%ASIR-V and DLIR-H met the diagnostic requirement for small arteries (3.03±0.18 and 3.53±0.51). CONCLUSION: DLIR-H improves CTA image quality and diagnostic confidence for TAK patients compared with 50%ASIR-V, and best balances image noise and spatial resolution compared with 100%ASIR-V.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助00采纳,获得10
刚刚
可爱的函函应助liulangnmg采纳,获得20
1秒前
科研通AI6应助咖啡豆采纳,获得50
1秒前
老干部发布了新的文献求助10
1秒前
1秒前
敬鱼发布了新的文献求助10
3秒前
雾里完成签到,获得积分10
3秒前
CCH发布了新的文献求助10
3秒前
4秒前
李健应助王灿章采纳,获得10
4秒前
科研通AI5应助月亮采纳,获得10
4秒前
小王小王发布了新的文献求助10
5秒前
啵赞的龟丝儿完成签到,获得积分10
5秒前
fanfan44390完成签到,获得积分10
5秒前
共享精神应助坚定的寒松采纳,获得10
5秒前
害羞文博发布了新的文献求助10
6秒前
ermu应助felix采纳,获得10
7秒前
毛毛弟发布了新的文献求助10
7秒前
曾无忧应助felix采纳,获得10
7秒前
wjx发布了新的文献求助10
8秒前
8秒前
激动的跳跳糖完成签到 ,获得积分10
9秒前
9秒前
ZeKaWa应助HY采纳,获得10
10秒前
11秒前
xxy发布了新的文献求助30
11秒前
11秒前
Tiramisu628发布了新的文献求助10
12秒前
李健应助小娅娅采纳,获得10
12秒前
冯123发布了新的文献求助10
12秒前
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得30
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
英勇的飞扬完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874