Meso-fracture mechanism of Longmaxi shale with different crack-depth ratios: Experimental and numerical investigations

材料科学 断裂韧性 复合材料 断裂力学 剪切(地质) 断裂(地质) 极限抗拉强度 油页岩 裂缝闭合 成核 裂纹扩展阻力曲线 地质学 各向异性 量子力学 物理 古生物学 有机化学 化学
作者
Lei Bo,Hongtao Li,Jianping Zuo,Haiyan Liu,Meilu Yu,Genshui Wu
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:257: 108025-108025 被引量:12
标识
DOI:10.1016/j.engfracmech.2021.108025
摘要

The mechanical properties and fracture mechanism of shale are vital to the design of hydraulic fracturing schemes. To better understand the formation and evolution of hierarchical crack networks in shales, a scanning electron microscope (SEM) with a loading device was applied to carry out three-point bending experiment on Longmaxi shale with different crack-depth ratios (CDR). The micro-damage and fracture processes of shale were observed in situ. Based on the double-K fracture criterion, the subcritical crack length, and the initial and unstable fracture toughness were calculated theoretically. The results demonstrated that the crack initial load, peak load, and subcritical crack length decreased significantly with the increase of the CDR. Both the initial and unstable fracture toughness were relatively stable when the CDR was between 0.3 and 0.5, and they can be regarded as constants. The meso-failure mechanism of shale was tensile and shear failure, and fracture patterns were inter-granular, trans-granular and coupled fracture. Generally, tensile failure typically results in irregular rough sections, whereas shear failure results in smooth sections with parallel slip lines. The micropores inside and between the crystals can induce the connection and penetration of cracks. The initiation of microcracks is the result of the continuous accumulation and nucleation of multiple micro/nanoscale damage, and the tortuous crack path is caused by the variation in the local stress field at the crack tip. In addition, clump and smooth joint model (SJM) were introduced to simulate the effect of the sedimentary particle and bedding plane on crack propagation based on particle flow code in two dimensions (PFC2D). The simulation results were in good agreement with the experimental observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
zfy完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
w17638619025完成签到 ,获得积分20
7秒前
撒上咖啡应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
8秒前
菠萝吹雪应助科研通管家采纳,获得30
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
西内!卡Q因完成签到,获得积分10
9秒前
我是125应助www采纳,获得10
9秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
9秒前
Zzzzzzzzzzz发布了新的文献求助10
9秒前
长情若魔发布了新的文献求助10
9秒前
酷酷酷完成签到,获得积分10
10秒前
10秒前
BaekHyun发布了新的文献求助10
11秒前
xuex1发布了新的文献求助10
11秒前
孙皓然完成签到 ,获得积分10
12秒前
14秒前
14秒前
16秒前
逐风给逐风的求助进行了留言
17秒前
科研通AI5应助灌饼采纳,获得30
17秒前
Owen应助Zzzzzzzzzzz采纳,获得10
18秒前
19秒前
20秒前
巫马秋寒应助笑点低可乐采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808