亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring multiple crowdsourced data to learn deep convolutional neural networks for road extraction

卷积神经网络 深度学习 地理 人工智能 数据科学 众包 萃取(化学) 地图学 计算机科学 机器学习 万维网 色谱法 化学
作者
Panle Li,Xiaohui He,Mengjia Qiao,Disheng Miao,Xijie Cheng,Dingjun Song,Mingyang Chen,Jiamian Li,Tao Zhou,Xiaoyu Guo,Xinyu Yan,Zengshan Tian
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:104: 102544-102544 被引量:4
标识
DOI:10.1016/j.jag.2021.102544
摘要

• Multiple crowdsourced data are used to reduce label noise in training samples. • We propose multi-map integration model (MMIM) for road extraction.. • The robustness of Deep Convolutional Neural Networks can be improved by MMIM. • Best road extraction accuracy can be achieved on a large-area covering 1059 km 2 . Road extraction from high-resolution remote sensing images (HRSIs) is essential for applications in various areas. Although deep convolutional neural networks (DCNNs) have exhibited remarkable success in road extraction, the performance relies on a large amount of training samples which are hard to obtain. To address this issue, multiple crowdsourced data are used in this study, including OpenStreetMap (OSM), Zmap and GPS. And a multi-map integration model (MMIM) is developed to improve the noise robustness of DCNNs for road extraction tasks. Specifically, rich geographical road information are obtained from multiple crowdsourced data, including main roads, new construction roads, midsize and small roads, which can generate complete road training samples and reduce the label noise. Meanwhile, by exploring the true road label information hidden in different crowdsourced data, the MMIM is used to generate high-quality refined labels for learning DCNNs. In this case, the DCNN-based road extraction methods have more opportunities to learn true road distribution and avoid the overfitting problems of label noise. Experiments based on real road extraction dataset indicate that the proposed method shows great performance, and road extraction results are smoother and more complete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
18秒前
31秒前
huangzsdy完成签到,获得积分10
34秒前
36秒前
量子星尘发布了新的文献求助10
38秒前
邹醉蓝完成签到,获得积分0
48秒前
52秒前
1分钟前
lanxinge完成签到 ,获得积分10
1分钟前
1分钟前
cornelialkx发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264