The Toronto Postliver Transplantation Hepatocellular Carcinoma Recurrence Calculator: A Machine Learning Approach

医学 肝细胞癌 肝移植 一致性 内科学 危险系数 置信区间 肿瘤科 移植 机器学习 计算机科学
作者
Tommy Ivanics,Walter Nelson,Madhukar S. Patel,Marco P.A.W. Claasen,Lawrence Lau,Andre Gorgen,Phillipe Abreu,Anna Goldenberg,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:Liver Transplantation [Wiley]
卷期号:28 (4): 593-602 被引量:35
标识
DOI:10.1002/lt.26332
摘要

Liver transplantation (LT) listing criteria for hepatocellular carcinoma (HCC) remain controversial. To optimize the utility of limited donor organs, this study aims to leverage machine learning to develop an accurate posttransplantation HCC recurrence prediction calculator. Patients with HCC listed for LT from 2000 to 2016 were identified, with 739 patients who underwent LT used for modeling. Data included serial imaging, alpha‐fetoprotein (AFP), locoregional therapies, treatment response, and posttransplantation outcomes. We compared the CoxNet (regularized Cox regression), survival random forest, survival support vector machine, and DeepSurv machine learning algorithms via the mean cross‐validated concordance index. We validated the selected CoxNet model by comparing it with other currently available recurrence risk algorithms on a held‐out test set (AFP, Model of Recurrence After Liver Transplant [MORAL], and Hazard Associated with liver Transplantation for Hepatocellular Carcinoma [HALT‐HCC score]). The developed CoxNet‐based recurrence prediction model showed a satisfying overall concordance score of 0.75 (95% confidence interval [CI], 0.64‐0.84). In comparison, the recalibrated risk algorithms’ concordance scores were as follows: AFP score 0.64 (outperformed by the CoxNet model, 1‐sided 95% CI, >0.01; P = 0.04) and MORAL score 0.64 (outperformed by the CoxNet model 1‐sided 95% CI, >0.02; P = 0.03). The recalibrated HALT‐HCC score performed well with a concordance of 0.72 (95% CI, 0.63‐0.81) and was not significantly outperformed (1‐sided 95% CI, ≥0.05; P = 0.29). Developing a comprehensive posttransplantation HCC recurrence risk calculator using machine learning is feasible and can yield higher accuracy than other available risk scores. Further research is needed to confirm the utility of machine learning in this setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈琳完成签到,获得积分10
1秒前
2秒前
凡帝完成签到,获得积分10
2秒前
tttttewe发布了新的文献求助30
2秒前
南宫清涟完成签到,获得积分10
3秒前
linfordlu完成签到,获得积分0
3秒前
MISSIW完成签到,获得积分10
3秒前
乐观的惜霜完成签到,获得积分10
4秒前
MM11111应助杭幻丝采纳,获得10
4秒前
涣醒完成签到,获得积分10
4秒前
yjzzz完成签到,获得积分10
5秒前
li完成签到 ,获得积分10
5秒前
6秒前
之星君完成签到,获得积分10
7秒前
samantha完成签到 ,获得积分10
8秒前
05完成签到 ,获得积分10
8秒前
斯文的天奇完成签到 ,获得积分10
9秒前
倪好完成签到,获得积分10
9秒前
太叔夜南完成签到,获得积分10
10秒前
科研通AI2S应助小小aa16采纳,获得10
10秒前
魏魏魏完成签到,获得积分10
10秒前
不吃芹菜完成签到,获得积分10
10秒前
在水一方应助英俊水池采纳,获得10
10秒前
阔达迎夏完成签到 ,获得积分10
11秒前
小马甲应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
Hayat应助Junehe采纳,获得10
12秒前
高星星发布了新的文献求助10
13秒前
14秒前
海绵宝宝完成签到,获得积分10
16秒前
16秒前
此身越重洋完成签到,获得积分10
16秒前
烟花应助魏魏魏采纳,获得10
17秒前
守望阳光1完成签到,获得积分10
17秒前
DJ完成签到,获得积分10
18秒前
李健的粉丝团团长应助zcy采纳,获得10
18秒前
fxy完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
Ultrasound-guided bilateral erector spinae plane block in the management of postoperative analgesia in living liver donors: a randomized, prospective study 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215796
求助须知:如何正确求助?哪些是违规求助? 2864532
关于积分的说明 8143046
捐赠科研通 2530783
什么是DOI,文献DOI怎么找? 1364849
科研通“疑难数据库(出版商)”最低求助积分说明 644316
邀请新用户注册赠送积分活动 616884